#### 2025年度 JPECフォーラム

< セッション3 > ケミカルリサイクルによるプラスチック資源循環技術開発

## 国内外のプラスチックケミカルリサイクルの状況

#### 2025年5月13日

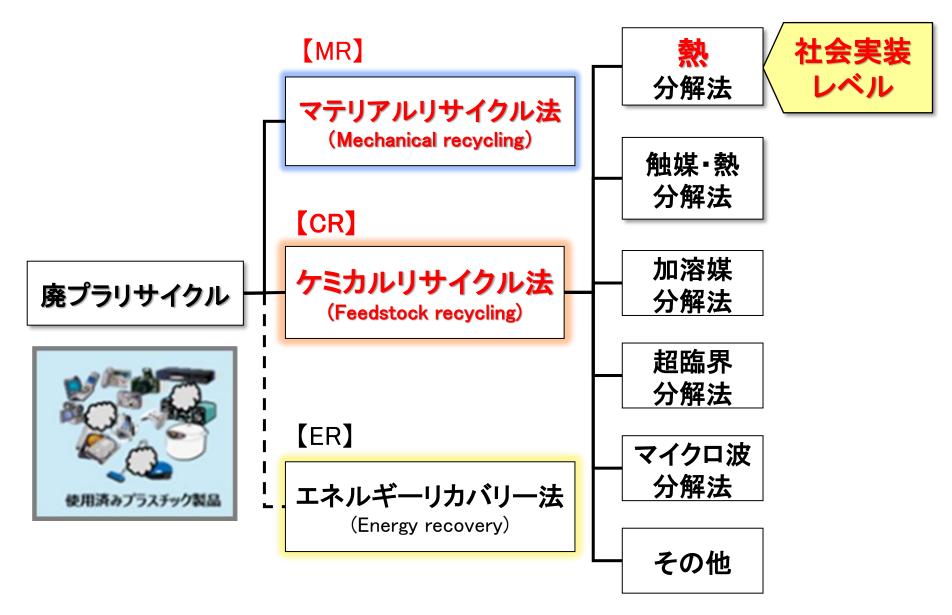
一般財団法人カーボンニュートラル燃料技術センター 製造プロセス技術部 プラスチック資源循環研究室



## 本日の内容



- 1. はじめに
- 2. 廃プラスチックの排出量、リサイクルの現状
- 3. ケミカルリサイクルプラントの稼働状況、計画
- 4. 欧州企業の取組み事例
  - ◇ Plastic Energy(イギリス)
  - **◇** BlueAlp(オランダ)
- 5. 廃プラのリサイクルに係る課題
- 6. まとめ


# 1. はじめに: 身の回りのプラスチック製品 リア匠

| 分類        | 用途事例         | 分類               | 用途事例 |
|-----------|--------------|------------------|------|
| ①家庭·台所用品  |              | ⑥スポーツ・<br>レジャー用品 |      |
| ②食品容器·包装  |              | ⑦住宅·建材·<br>家具    |      |
| ③文具・おもちや類 | WIND SHOSPES | <b>8医療</b>       |      |
| ④電気·電子製品  |              | 9乗り物             |      |
| ⑤情報社会     |              | ⑩農業·水産業          |      |

出典:メーカー・関係会社HP

## 1. はじめに: 廃プラリサイクル方法





## 1. はじめに: 廃プラとは



# 廃プラスチック

その他

添加剤

強化材

充填材

マトリックス 樹脂 汚染物、コンタミ物、劣化物他

酸化防止剤、可塑剤他

炭素繊維、ガラス繊維等

酸化チタン、タルク他

熱硬化性樹脂 等

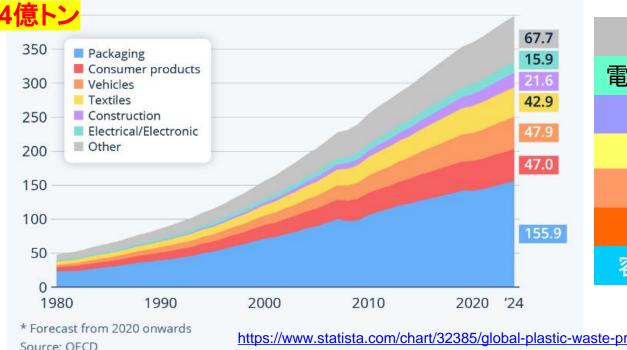
熱可塑性樹脂 (PE, PP, PS, PVC, PET, PA, PMMA, PC 他) Plastics to Plastics

石化原料等への 転換には、 無害化等の 処理が必須

# 2. 廃プラの排出量、リサイクルの現状(1) JPEC



### 廃プラ発生量:年間3億6000万トン(2025年3月)


https://www.statista.com/topics/5401/global-plastic-waste/#topicOverview

#### The World Is Flooded With Plastic Waste

Global plastic waste production by application (in million tonnes)\*

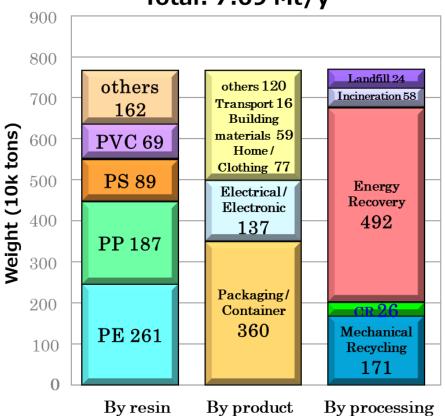


リサイクル率<10%





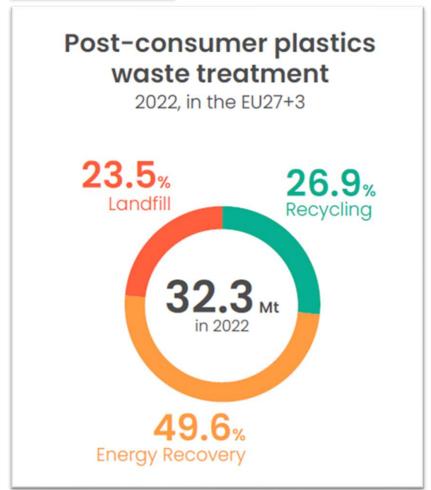
https://www.statista.com/chart/32385/global-plastic-waste-production-by-application/


Copyright © 2025 Japan Petroleum and Carbon Neutral Fuels Energy Center All Rights Reserved.

# 2. 廃プラの排出量、リサイクルの現状(2) リア区へ






Total: 7.69 Mt/y



**Emissions and Processing amount of** Fig. plastic waste in Japan (CY2023)

Resource: Plastic Waste Management Institute's report





Source: The Circular Economy for Plastics MARCH 2024 A European Analysis Executive summary

## 3. CRプラントの稼働状況、計画



#### 表1 混合廃プラスチックのケミカルリサイクルプラント稼働状況【抜粋版】

| Company        | Partner          | Process                  | Methods   | Site        | Capacity<br>(t/Y) | Operation<br>Year |
|----------------|------------------|--------------------------|-----------|-------------|-------------------|-------------------|
| Plastic Energy | TotalEnergies    | TAC <sup>™</sup> Process | Pyrolysis | Spain       | 5,000             | 2016              |
| Quantafuel     | BASF             | ChemCycling®             | Pyrolysis | Denmark     | 16,000            | 2019              |
| BlueAlp        | Borealis/Renasci | -                        | Pyrolysis | Belgium     | 21,300            | 2021              |
| Agilyx         | Exxon Mobil      | Cyclyx                   | Pyrolysis | USA         | 36,000            | 2022              |
| Honeywell      | TotalEnergies    | UpCycle                  | Pyrolysis | Spain       | 30,000            | 2023              |
| Plastic Energy | Exxon Mobil      | TAC <sup>™</sup> Process | Pyrolysis | France      | 33,000            | 2023              |
| CFP            | Mitsui Chemical  | _                        | Pyrolysis | Japan       | 9,000             | 2024              |
| Plastic Energy | SABIC            | TAC <sup>™</sup> Process | Pyrolysis | Netherlands | 20,000            | 2024              |

出所:(株)旭リサーチセンターARCレポート及びJPECによる独自調査結果を踏まえてJPECにて作成

- ◇欧州企業を中心に熱分解法プロセスが主流、処理量は増大傾向
- ◇一部の企業は、公称能力が不達、工場閉鎖等、順調ではない
- ◇熱分解法以外の超臨界水熱分解法、触媒分解法も稼働予定
- ◇今後、国内、韓国、中国等、アジアでも新規プラントが稼働予定

## 4. 欧州企業の取組み事例(1)



#### Plastic Energy(英国)

#### 【会社概要、特徵】

- ◇会社設立:2011年(本社:ロンドン)
- ◇廃プラからの熱分解油製造プロセス TAC™ プロセスを開発
- ◇熱分解油 TACOIL™ を石油化学会社に販売
- ◇ISCC(International Sustainability & Carbon Certification) 認証取得: 2019年
- ◇廃プラ原料: PE、PP及びPS·・・PVC、PETに上限値設定



TAC™ process)

I will be a second of the control o

The vaporised molecular chains are selected and act as a filter.

【反応器】

【コンタクター】

出所: Plastic Energy ホームページ

## 4. 欧州企業の取組み事例(1)



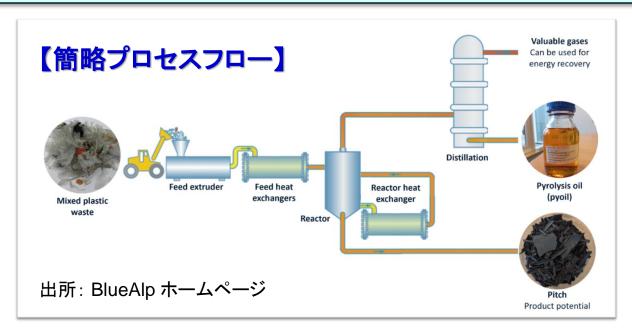
#### Plastic Energy(英国)

| Company        | Partner       | Process                  | Methods   | Site        | Capacity<br>(t/Y) | Operation<br>Year |
|----------------|---------------|--------------------------|-----------|-------------|-------------------|-------------------|
| Plastic Energy | TotalEnergies | TAC <sup>™</sup> Process | Pyrolysis | Spain       | 5,000             | 2016              |
| Plastic Energy | TotalEnergies | TAC <sup>™</sup> Process | Pyrolysis | Spain       | 5,000             | 2017              |
| Plastic Energy | ExxonMobil    | TAC <sup>™</sup> Process | Pyrolysis | France      | 33,000            | 2023              |
| Plastic Energy | SABIC         | TAC <sup>™</sup> Process | Pyrolysis | Netherlands | 20,000            | 2024              |

#### 【現状、今後の見通し】

- ◇TAC™プロセス: semi continuous
  - ・原料投入、TACOIL™および合成ガスの製造:連続プロセス
  - ・熱分解反応工程(反応温度400℃):バッチプロセス
- ◇現在、2~3万トン/年の装置がフランス、オランダで稼働
  - **➡2025年:6.6万トン/年、2026年:10万トン/年の装置が稼働予定**

「ケミカルリサイクル技術の"世界のリーダー"を目指している」


## 4. 欧州企業の取組み事例(2)



#### BlueAlp(オランダ)

#### 【会社概要、特徵】

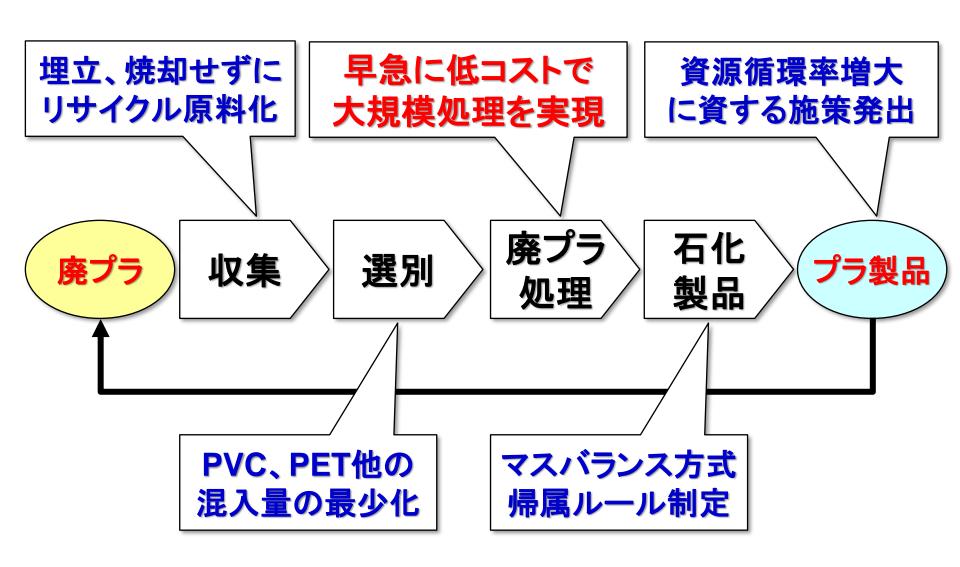
- ◇本社・工場:オランダ・アイントホーフェン
- ◇ビジネスモデル:熱分解技術のライセンス、プラントEPC
  - ➡プラントに導入するユニットは、自社工場で設計、部材調達、製作
  - ➡ラボスケールから商業規模のプラントまで稼働させた経験を保有
  - ➡スケールアップ、熱分解油の品質予測や解決するノウハウを保有



## 4. 欧州企業の取組み事例(2)



#### BlueAlp(オランダ)


| Company | Partner          | Process | Methods   | Site        | Capacity<br>(t/Y) | Operation<br>Year |
|---------|------------------|---------|-----------|-------------|-------------------|-------------------|
| BlueAlp | -                | BlueAlp | Pyrolysis | Switzerland | 3,000             | 2014              |
| BlueAlp | Borealis/Renasci | BlueAlp | Pyrolysis | Belgium     | 21,300            | 2021              |

#### 【現状、今後の見通し】

- ◇熱分解プロセスの特徴: Slow-cracking / gradual-heating process
  - ➡熱分解温度:400℃
- ◇ベルギーのプラント:選別会社からPE、PP、PSを調達、熱分解油を製造
  - ➡15,000時間の運転を達成(2024年11月時点)
- ◇Shellとのパートナーシップ契約を締結(株主、21.25%を保有)
  - ➡熱分解油、若しくは、他の成分と併せて水蒸気改質装置にて共処理
- ◇70千トン/年:基本設計パッケージが完成
  - ➡反応器1基当たりの処理量が最も多い可能性あり

## 5. 廃プラのリサイクルに係る課題





## 6. まとめ



- ◇全世界で約4億トン、国内では約8百万トンの廃プラが排出
  - →全世界でのリサイクル率は、10%足らず
- ◇廃プラの性状に大きな制約があるマテリアルリサイクルに 対してケミカリルリサイクル(CR)による大規模処理の期待大
- ◇欧州企業による熱分解法を用いたCRが先行
  - ➡稼働中のプラント規模は、数万トン/年 レベル、排出量との乖離大
- ◇PVCやPETを含む混合プラの大規模処理技術が必要
  - ➡選別技術の高度化、経済的な無害化処理技術開発も重要
- ※技術開発の加速以外に、課税制度や認証制度の制定等を 含む社会システム全体の構築や整備も必要



## ご清聴ありがとうございました

謝辞:本日の成果は、経済産業省からの補助事業である、令和6年度「石油供給構造高度化事業費補助金(次世代燃料安定供給のためのトランジション促進事業)/ 製油所の脱炭素化研究開発事業」推進の一環として行ったものです。