2025年度 JPECフォーラム

含酸素化合物の共存下でのジベンゾチオフェン の水素化脱硫反応に関する研究

2025年5月13日

東京農工大学

-禁無断転載·複製 ©東京農工大学 2025-

JPEC

目次

▶背景

▶ ジベンゾチオフェンの水素化脱硫およびグアヤ

コールの水素化脱酸素反応

▶ ジベンゾチオフェンの水素化脱硫反応に及ぼす

含酸素化合物の影響

▶ まとめ

CO。削減におけるICAOのシナリオ

Using less fuel

- Efficient airplanes
- Operational efficiency

Changing the fuel

- Lower lifecycle CO₂
- No infrastructure modifications
- Sustainable Biofuels'

Presented to ICAO GIACC/3 February 2009 by Paul Steele on behalf of ACI, CANSO, IAT A and ICCAIA

Introduction of New Plane (efficiency Promotion) Policy: Usage of SAF (Sustainable aviation fuel) SAF in Japan: 1,710,00 kL/year (10%) in 2030.

様々なSAF製造技術

Category	Pathways	Intermediate	Interm. Cost ^A (\$/gal) [((\$/GGE)]	Final jet fuel cost (\$/gal) [((\$/GGE)]
ATJ	Ethanol to Jet	Ethanol ^B	2.5-2.6 (3.8-4.0)	
	n-Butanol to Jet	N-butanol ^B	3.7 (4.1)	Not Available
	Iso-Butanol to Jet	Iso-butanol ^B	3.6 (4.0)	
	Methanol to Jet	Methanol	1.5 (3.0)	
OTJ	Hydro-processed renewable jet	Vegetable-Oil ^C	4.3-8.5 (4.0-8.2)	4.3–9.2 (4.0–8.5)
0 20	Catalytic hydro-thermolysis	Vegetable-Oil ^D	1.7-4.3 (1.6-3.9)	
	Hydro-treated depolymerized cellulosic jet (fast pyrolysis with upgrading to jet fuel)	Pyrolysis Oil	1.0–1.5 (1.8–2.6)	Not available
GTJ	Fisher Tropsch biomass to liquid process	Syngas derived diesel	6.4-6.7 (6.0-6.2)	
	Gas Fermentation	Ethanol from syngas fermentation	2.8–3.1 (4.3–4.8)	Not available
STJ	Catalytic Upgrading of Sugar to Jet	HMF and DMF	6.2–9.4 (4.8–9.9)	Not available
	Direct sugar to hydrocarbons	Hydrocarbons ^E	$4.6^{\mathbf{F}}$ (4.4)	7.2 (6.6)

Note: A.The cost numbers are inflated to 2011 U.S. dollars using the industrial inorganic Chemical Index for SRI Consulting .

B. The alcohol intermediates are produced from cellulosic biomass. C. Soybean and algal oils are selected for the lower and higher end bio-oils. D. Jatropha and soybean oils are selected for the lower and higher end bio-oils. E. Pentadecane. F. Target value of the product.

軽油中の硫黄分の規制と石油業界の取り組み

重質油水素化脱硫装置処理能力(千バレル/日):直接550(14基)、間接910(26基)

軽油とバイオオイルのCo-ProcessingによるSAF留分製造

熱分解バイオオイルの成分

Feed/ wt.%	Bio-oils	Char	Gas	Water
Corn stalks ^[1]	35.0	29.0	13.5	6.0
Corn cobs ^[2]	47.4	18.5	20.3	14.0
Corn stover ^[2]	54.3	16.8	21.9	7.0
Birch ^[3]	62.4	25.3	4.4	20.2
Poplar ^[3]	65.8	7.7	10.8	12.1

Table 2. Main pyrolysis oil compounds identified and quantified by GC/MS.

Bio oils/ wt.%	C ₂ -C ₄	Phenols	Furans	Anhydrosugars	phenol oligomers	Acids
Corn stalks ^[1]	-	6.2	3.8	16.4	11.8	0.6
Corn cobs ^[2]	17.6	3.0	1.5	6.9	4.4	-
Corn stover ^[2]	20.1	3.7	2.0	14.8	3.0	-
Poplar ^[3]	17.6	-	-	8.7	16.2	-

[1] C.U. Pittman; et al. Energy & Fuels, 26 (2012) 3816-3825.[2] C.A. Mullen; et al. Biomass Bioenergy, 34 (2010) 67-74.

[3] D. Mohan; Energy & Fuels, 20 (2006) 848-889.

熱分解バイオオイルの成分

[1] A.P. Pinheiro Pires; et al. Energy & Fuels, 33 (2019) 4683-4720.

Co-Processingにおける課題

研究目的

水素化処理プロセスを用いた灯軽油留分等と廃食油やトール油 等低炭素由来の原料の共処理において、モデル硫黄化合物の水 素化脱硫に対する含酸素モデル化合物の影響を動力学的に検討 し、実油の水素化共処理の装置運転および新たな触媒設計指針 の獲得につなげる。

報告内容

1)含酸素モデル化合物の水素化脱酸素反応(HDO)およびDBT の水素化脱硫反応(HDS)機構の解明
2)各々の含酸素化合物がジベンゾチオフェンの水素化脱硫反応
に及ぼす影響の解明

水素化脱硫および水素化脱酸素反応

原料: 0.1 – 1.0wt%デカリン溶液
① ジベンゾチオフェン(DBT)
② グアヤコール (GUA)
③ ビフェニルエテール (DPE)
④ ジベンゾフラン (DBF)

反応条件 触媒: 市販CoMo触媒 前処理: 5% H₂S 予備硫化 WHSV = 10-60 h⁻¹ H₂/Oil: 500/750/1000 水素圧力: 1-5 MPa 温度:200-300 °C

生成物分析: 含酸素化合物、炭化水素:GC-FID 含硫黄化合物(脱硫率)GC-SCD GC-MS, GC-FID

ジベンゾチオフェン(DBT)の水素化脱硫反応

Figure 1. DBT conversion and product yields under different conditions. 反応条件: 1.0 wt% DBTのデカリン溶液

HDS動力学解析法の確立

1) DBTの反応経路図

2) Langmuir-Hinshelwood型反応速度式

$$\begin{split} r_{DBT} &= \frac{k_1 K_{DBT} p_{DBT}}{A} \frac{K_{H_2} p_{H_2}}{1 + K_{H_2} p_{H_2}} \\ r_{BP} &= \frac{k_1 K_{DBT} p_{DBT} - k_2 K_{BP} p_{BP}}{A} \frac{K_{H_2} p_{H_2}}{1 + K_{H_2} p_{H_2}} \\ r_{CHB} &= \frac{k_2 K_{BP} p_{BP}}{A} \frac{K_{H_2} p_{H_2}}{1 + K_{H_2} p_{H_2}} \\ A &= 1 + K_{DBT} p_{DBT} + K_{BP} p_{BP} \end{split}$$

Arrhenius式 $k = Aexp\left(-\frac{E_a}{RT}\right)$ Van't Hoff式 $\ln \frac{K_{T_1}}{K_{T_2}} = -\frac{\Delta H^0}{R} (\frac{1}{T_1} - \frac{1}{T_2})$

ジベンゾチオフェン水素化脱硫反応の動力学解析結果

Table 3. DBTのHDS反応におけるDBTおよびBP反応速度定数kと吸着平衡定数K

反応温度/ °C	反応速度 [10 ⁻⁴ mol·	定数 h ⁻¹ ·g ⁻¹ _{cat}]	吸着平衡定数K[MPa-1]			
	<i>k</i> ₁	k ₂	<i>К_{DBT}</i> х 10 ⁻⁵	<i>К_{вР}</i> х 10 ⁻⁵	$K_{H_2} \ge 10^{-2}$	
200	0.319	0.041	1.808	1.265	0.249	
225	1.205	0.122	0.844	0.625	0.170	
250	4.006	0.326	0.424	0.330	0.120	

Table 4. 各々の反応速度定数の指前因子と活性化エネルギー

反応経路	活性化エネルギー <i>E</i> a (kJ/mol)	指前因子(A)
DBT→BP	104	1.00 x 10 ⁷
BP→CHB	85.0	1.00 x 10 ⁴

Table 5. 各々の反応物の吸着熱

	DBT	BP	H_2	
ΔH (kJ/mol)	59.7	55.3	30.0	

Guaiacolの水素化脱酸素反応

HDO動力学解析方法の確立

1) Guaiacolの反応経路図 (Lumpedモデルより簡易化した反応経路図)

2) 反応速度式(Power-Law型)

$$r_{1} = k_{1} \cdot p_{1}^{\alpha_{1}} \cdot p_{H_{2}}^{\beta_{1}}$$

$$r_{2} = k_{2} \cdot p_{2}^{\alpha_{2}} \cdot p_{H_{2}}^{\beta_{2}}$$

$$r_{3} = k_{3} \cdot p_{3}^{\alpha_{3}} \cdot p_{H_{2}}^{\beta_{3}}$$

$$r_{4} = k_{4} \cdot p_{4}^{\alpha_{4}} \cdot p_{H_{2}}^{\beta_{4}}$$

Arrhenius式

$$k = Aexp\left(-\frac{E_a}{RT}\right)$$

 $r_i: 成分iの反応速度 [mol·h-1·g-1cat]$
 $k_i:反応速度定数[mol·h-1·g-1cat]$
 $p_i:成分iの分圧 [Pa]$
 $\alpha_i:成分iの冪指数 [-]$
 $\beta_i:成分iの冪指数 [-]$

GuaiacolのHDO反応の動力学解析の結果

Table 6. Guaiacolの水素化脱酸素反応における各々の反応速度定数

	反応速度定数 [10 ⁻⁴ mol·h ⁻¹ ·g ⁻¹ _{cat}]							
反心温度/ C	<i>k</i> ₁		<i>k</i> ₂		<i>к</i> ₃		<i>k</i> ₄	
200	0.37		0.14		0.19		0.27	
225	1.26		0.20		0.93		0.29	
250	13.82		6.13		7.96		6.05	

Table 7. Guaiacolの水素化脱酸素反応における各々の反応の冪指数

町内道町での		幂	指数					
汉心值度/ U	α ₁	β_1	α ₂	β_2	α ₃	β ₃	α ₄	β_4
200	0.122	0.073	0.430	0	0.079	0.038	0.110	0.081
225	0.122	0.073	0.430	0	0.079	0.038	0.110	0.081
250	0.038	0.032	0.009	0	0.043	0.009	0.002	0.001

18

Table 8. 算出した各々の反応速度定数の指前因子と活性化エネルギー

反応経路	活性化エネルギー E a	指前因子(A)
	(KJ/MOI)	. ,
$Guaiacol \rightarrow Bezenediol$	148	6.66 x 10 ¹¹
$Bezenediol \to Phenol$	152	7.05 x 10 ¹¹
$Phenol \rightarrow Benzene$	153	1.39 x 10 ¹²
Benzene \rightarrow Toluene	126	1.28 x 10 ⁹

DBT水素化脱硫反応に対する含酸素化合物の影響 ■ 含酸素化合物の濃度の影響(O/S molar ratios)

Figure 3. Effect of oxygenated compound concentration on HDS activities of DBT. 反応条件: GUA/ DBF/ DPE + DBT, 圧力 5 MPa; H₂/oil, 500 (v/v); WHSV, 30 h⁻¹

Co-processingにおけるHDSの動力学解析方法の確立

1) DBTのHDS反応に及ぼす含酸素化合物の影響

2) 反応速度式(Langmuir-Hinshelwood型)

 $r_{DBT} = \frac{k_1 K_{DBT} p_{DBT}}{A} \frac{K_{H_2} p_{H_2}}{1 + K_{H_2} p_{H_2}}$ $r_{BP} = \frac{k_1 K_{DBT} p_{DBT} - k_2 K_{BP} p_{BP}}{A} \frac{\kappa_{H_2} p_{H_2}}{1 + \kappa_{H_2} p_{H_2}}$ $r_{CHB} = \frac{k_2 K_{BP} p_{BP}}{A} \frac{K_{H_2} p_{H_2}}{1 + K_{H_2} p_{H_2}}$ $A = 1 + K_{DBT}p_{DBT} + K_{BP}p_{BP} + K_Xp_X$ ジベンゾフラン ヤコール ジフェニルエーテル Arrhenius式 $k = Aexp\left(-\frac{E_a}{RT}\right)$ Van't Hoff式 $\ln \frac{K_{T_1}}{K_{T_2}} = -\frac{\Delta H^0}{R} (\frac{1}{T_1} - \frac{1}{T_2})$

r_i: 成分iの反応速度 [mol·h⁻¹·g⁻¹_{cat}] k_i: 反応速度定数 [mol·h⁻¹·g⁻¹_{cat}] K_i: 成分iの吸着定数 [Pa⁻¹] p_i: 成分iの分圧 [Pa] X: 含酸素化合物

20

Co-processingの動力学解析結果

Table 9. HDS反応におけるDBTおよびBPの反応速度定数kと各化合物吸着平衡定数K

巴宁油电	反応速度定数 [10 ⁻⁴ mol·h ⁻¹ ·g ⁻¹ cat]					吸着平衡定数 K[MPa⁻¹]			
以心温度 / ℃	k _{dbt} GUA	k _{BP}	k _{DBT} DBF	<i>k</i> _{BP}	k _{DBT} DPE	κ _{ΒΡ}	- <i>K_{GUA}</i> x 10 ⁻⁶	<i>К_{DBF}</i> х 10 ⁻⁴	<i>К_{DPE}</i> х 10 ⁻⁴
250	3.63	1.12	4.86	0.81	4.65	0.88	3.85	1.67	1.53
275	12.1	2.87	16.0	2.07	15.3	2.25	1.65	0.93	0.81
300	36.1	6.79	47.2	4.91	45.3	5.32	0.77	0.55	0.46

Table 10. 各々の反応の活性化エネルギー

日亡汉政	活性化エネルギー E_{a} (kJ/mol)							
<u> </u>	GUA	DBF	DPE					
$DBT \to BP$	114	113	114					
$BP\toCHB$	90.0	90.0	90.0					

Table 11. 各反応物の吸着熱

	DBT	GUA	DBF	DPE	
ΔH (kJ/mol)	59.7	80.6	55.3	60.1	

まとめ

▶ ジベンゾチオフェンの水素化脱硫およびグアイアコールの水素化 脱酸素反応の動力学解析: 各種条件下でDBTのHDS反応およ びGuaiacolのHDO反応を実施し、Langmuir-Hinshelwoodおよび Power-Lawモデルをそれぞれ用いて、それぞれの反応速度定数、 活性化エネルギー、吸着熱等を算出した。

▶ 水素化共処理において水素化脱硫への含酸素化合物の影響の 動力学解析: 含酸素化合物(Guaiacol、DBF、DPE)をDBTとの混 合原料の水素化処理を行い、共処理における反応速度定数、活 性化エネルギー、吸着熱等を算出した。 DBTのHDSへの影響: Guaiacol > DBF > DPE

今後の展望

- ▶ 実油を用いたHDSおよびHDO反応機構の解明:実軽油およびバイ オオイルを高圧固定床反応器で処理し、GC×GCによる生成物解析 を通じて反応経路を明らかにし、動力学解析を試みる。
- ➤ Co-processingでHDSへのバイオオイルの影響評価:
- 1) 軽油にO/S比0.1~2.0のモデル含酸素化合物を添加し、HDS反応に及ぼす影響の動力学解析を試みる。
- 2) 軽油に5~20wt%含酸素実油を添加し、水素化共処理を行い、 その影響の動力学解析を試みる。

SAF製造に向けた知見の蓄積:得られたデータを基に、共処理技術によるSAF製造に関する基礎的理解を深める。

謝辞 本研究は経済産業省の補助により (一財)カーボンニュートラル燃料技術センターが 実施する技術開発事業の一環として 行われたものです。

ここに記し謝意を表します。