2021年度 JPECフォーラム

「革新的石油精製技術のシーズ発掘」 電場触媒反応を用いた 低温高選択的ブタン脱水素プロセスの開発

2021年5月12日

早稲田大学 先進理工学研究科 比護 拓馬

ー禁無断転載・複製 ©JPEC 2021ー

研究背景

C₄オレフィン・ブタジエン製造 ナフサクラッカー エチレン製造の併産物としてのブテン類, ブタジエン エタンクラッカーへシフト ブテン類・ブタジエンの生産量低下(受給ギャップ拡大)

ブテン類・ブタジエンを目的とした高収率製造プロセス

n-butane脱水素

 $n-C_4H_{10} \rightarrow C_4H_6 + 2H_2$

<u>課題</u>

→ 多量の炭素析出(活性の劣化)

非平衡不可逆な新規反応プロセスの構築が必要

電場印加触媒反応プロセスを適用

荷電キャリアの能動的に制御し、新規表面反応メカニズムを誘起

研究背景

電場触媒反応 メチルシクロヘキサン脱水素の例2),3)

電場触媒反応プロセスは脱水素反応にも有効

2) K. Takise, et al, RSC. Adv., 2016, 6, 38007.
3) M. Kosaka et al, Int. J. Hydrogen Energy, 2020, 45(1), 738-743.

研究背景

<u>電場n-butane脱水素の狙い</u>

> 電場(外部力場)適用によって*n*-butane脱水素反応をアシスト ブテン類、ブタジエンの収率向上

▶ 反応低温化によるコーク析出の抑制

プロセスの安定性向上

触媒活性評価

<u>電場触媒反応装置</u> 常圧固定床流通式反応器

n-butane脱水素活性比較

ガス組成:10% *n*-C₄H₁₀ (Ar balance) 総流量:50 mL min⁻¹ 触媒重量:0.1 g 触媒:3wt% Pt/TiO₂

> 電場のアシストにより低温域でn-butane脱水素活性が向上

n-butane脱水素生成物収率

ガス組成:10% *n*-C₄H₁₀ (Ar balance) 総流量:50 mL min⁻¹ 触媒重量:0.1 g 触媒:3wt% Pt/TiO₂

生成物収率 (反応温度:350 ℃)

	<i>n</i> -butane _ conversion / %	Yield / %			
		1-butene	cis-2-butene	trans-2-butene	
Equilibrium	8.2	1.7	2.5	4.0	
Electric field	14.3	3.6	4.2	6.5	
Thermal	2.5	0.6	0.7	1.2	

<u>生成物収率 (反応温度:400 ℃)</u>

	<i>n</i> -butane _ conversion / %	Yield / %				
		1-butene	cis-2-butene	trans-2-butene	1,3-butadiene	
Equilibrium	18.5	4.2	5.5	8.6	0.3	
Electric field	21.8	5.4	6.1	9.3	0.4	
Thermal	9.1	2.2	2.5	4.1	0.1	

n-butane脱水素活性比較

ガス組成:10% *n*-C₄H₁₀ (Ar balance) 総流量:50 mL min⁻¹ 触媒重量:0.1 g 触媒:3wt% Pt/TiO₂

> 従来の熱力学的平衡転化率を超えて脱水素反応が進行

活性化エネルギー

Arrhenius plots

▶ 電場印加により見かけ活性化エネルギーが低下

n-butane脱水素活性安定性

ガス組成:10% *n*-C₄H₁₀ (Ar balance) 総流量:50 mL min⁻¹ 触媒重量:0.1 g 触媒:3wt% Pt/TiO₂

9

▶ 反応低温化による副反応の抑制

まとめ

①電場(外部力場)アシストによるn-butane脱水素性能向上

● 低温域(< 450 ℃)で*n*-butane転化率向上を達成

- > *n*-butane脱水素活性
 → 400 °C以下で平衡を超える転化率・ブテン類収率
 > 1,3-butadiene収率
 → 熱触媒反応と比べ収率向上(ただし1%以下と低い)
- ②反応低温化による炭素析出抑制・触媒安定性向上
- ▶ 炭素析出量低減
- ▶ 触媒活性劣化の抑制

活性劣化を抑制効果を確認