

基本事項	
事例番号	00586
投稿日	2012/03/06
タイトル	ルーフデッキ上のヘアークラックからの灯油滲み
発生年月日	2010/01/20
発生時刻	10:00
気象条件	天候:晴 気温:21 湿度:70%
発生場所(国名)	日本
発生場所(都道府県、州 、都市など)	沖縄県
プロセス	石油精製

事故事象		
事故事象	概要	2010年1月20日15時55分、点検員が3ヶ月点検を実施していたところ、タンクルーフデッキのスティフナーリングにヘアークラックを発見し、滲む程度の灯油の流出を確認した。 【事故事象コード】漏洩・噴出
	経過	(1)2005年のタンク開放検査時にスティフナーリングのコーナー部に割れを発見。 (2)開放検査時の措置として、割れを溶接補強し、補強板を設置。 (3)その後もスティフナーリングのコーナー部に屋根板のたわみ等の応力が繰り返し集中。 (4)屋根板溶接線の熱影響部と母材の境界部分に疲労割れが発生。 (5)割れた部分から滲む程度の灯油が流出。
	原因	スティフナーリングのコーナー部に応力が集中したこと。

起因事象・進展事象		
起因事象		スティフナーリングのコーナー部での疲労割れの発生 【起因事象コード】静止機器の腐食・劣化・破損
起因事象の要因	1	スティフナーリングのコーナー部への応力の集中 【要因コード】直接要因 > 保守・点検要因 > 保守・保全不良

▼☆ ルーフデッキ上のヘアークラックからの灯油滲み

進展事象・進展事 1 象の要因	灯油の漏洩 【事象コード】漏洩・噴出
事故発生時の運転·作業状 況	定常運転中・ルーチン作業中
現場経験年数	20年以上 【補足説明】 約30年

装置・系統・機器		
起因事象に関連した・系統	装置	貯蔵・入出荷設備 > 貯蔵系 【補足説明】地上タンク(浮屋根式)
起因事象に関連した	機器	静止機器 > タンク > フローティングルーフタンク 【補足説明】ルーフデッキ
発災装置・系統	1	貯蔵・入出荷設備 > 貯蔵系 【補足説明】地上タンク(浮屋根式)
発災機器	1	静止機器 > タンク > フローティングルーフタンク 【補足説明】ルーフデッキ
事故に関連したその 機器	の他の	
運転条件		常温、常圧
主要流体		灯油
材質		鋼鉄(タンク屋根板)

被害状況	
被害状況 (人的)	死者:なし 負傷者:なし
被害状況(物的)	なし
被害状況 (環境)	なし
被害状況(住民)	なし

検出・発見			

<u>ルーフデッキ上のヘアークラックからの灯油滲み</u>

事故の検出・発見 1	1	運転中・日常の点検・検査で検出・発見
時期		【補足説明】3ヶ月点検の実施中
事故の検出・発見 1	1	五感(異音、異臭、振動、目視など)
方法		

想定拡大と阻止		
重大事故への拡大阻止策・処置	樹脂系補修材(ベルゾナ)を用いた割れ箇所の応急補修	
想定重大事故	さらなる灯油の流出	

再発防止と教訓	
再発防止対策	次回タンク開放検査時の恒久補修
教訓	

安全専門家のコメント	
安全専門家のコメント	シングルデッキのスティフナーリングのコーナー部は応力が集中しやすい部分である。5年前の開放検査時にも割れを発見し、溶接により補修し、補強板を設置していることから、このような部分は保全上重要な管理ポイントに指定し、検査期間を短めに設定するなど、きめ細やかな保全管理を実施していくことが望ましい
	。また当該事業所のように、台風などの強風によりルーフデッキそのものが長時間にわたり繰り返し振動などが発生して、局部的な繰り返し応力がかかり、応力集中部などのクラックは発生しやすい状態にあるといえよう。そのためにも同様な環境にある浮き屋根式タンクの場合、点検や検査箇所に関して水平展開が重要である。

添付資料・参考文献・キーワード

参考資料(文献など) 消防

- 添付資料
- **キーワード(>同義語)**
 - **〒** 貯蔵系

<u>ルーフデッキ上のヘアークラックからの灯油滲み</u>

- **■** スティフナーリング
- **デ** タンク > 貯槽
- 🗝 貯蔵入出荷設備 > オフサイト設備
- ₩ 応力集中
- ₩ 疲労割れ
- ルーフデッキ

関連情報