

Usage of Biofuels in Thailand and Future Technological Issues

presented at "The 5th JCAP Conference Program" at Hitotsubashi Memorial Hall, National Center of Sciences Building, Tokyo, JAPAN on February 23, 2007

Peesamai Jenvanitpanjakul Thailand Institute of Scientific and Technological Research (TISTR)

Presentation Outline

- Thailand Energy Situation
- Target of Renewable Energy
- Fuel Ethanol
 - Production
 - Usage
- Biodiesel
 - Production
 - Usage
- Future Technological Issues
- Conclusion

Thailand Energy Situation

Domestic Production of Primary Energy

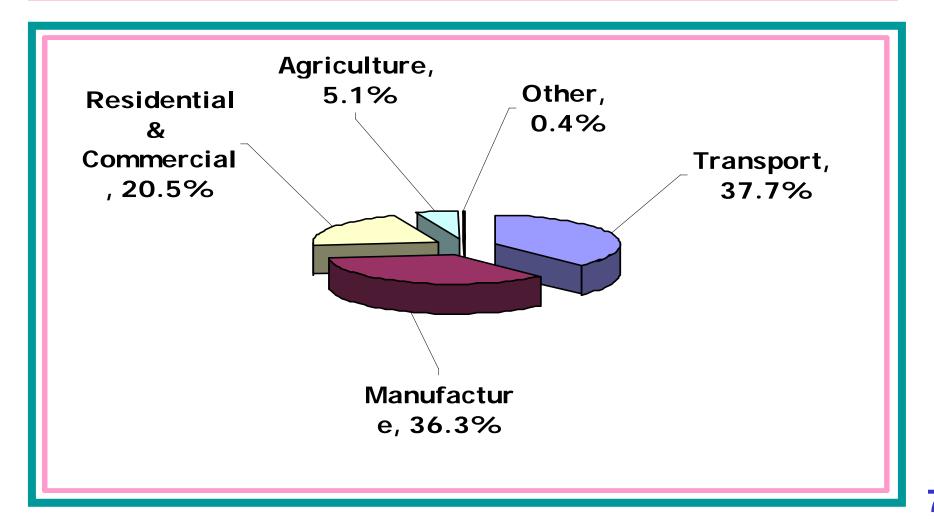
- Crude Oil
- Condensate
- Natural Gas
- Lignite
- Hydro
- New and Renewable
 - Energy

Energy Situation in Thailand

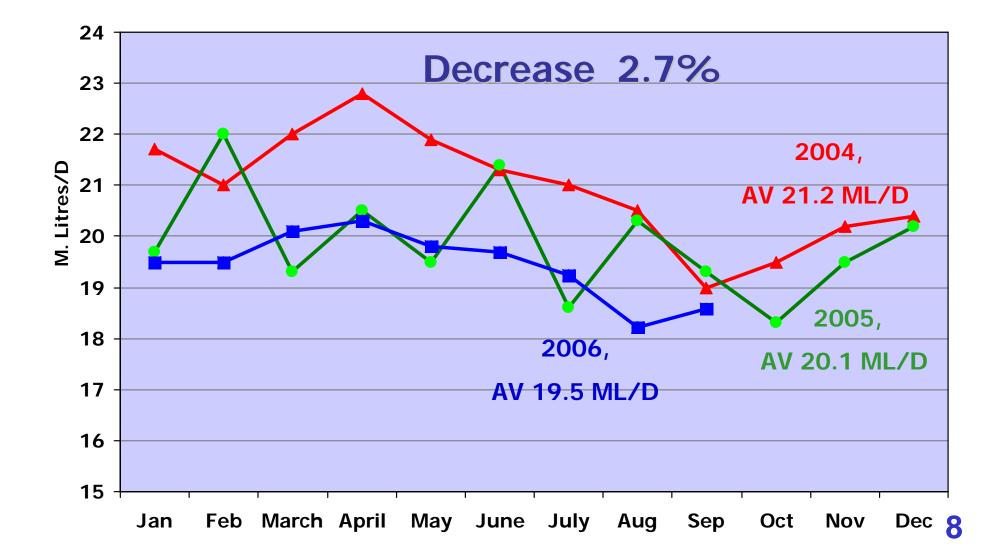
- Local fossil fuel are limited
- Inadequate to meet the national energy demand
- 4 Oil price increasing
- In 2004, energy consumption \$ 28.75 billion or 15.7% of GDP
- **Rely on import energy**, \$18.8 billion in 2005

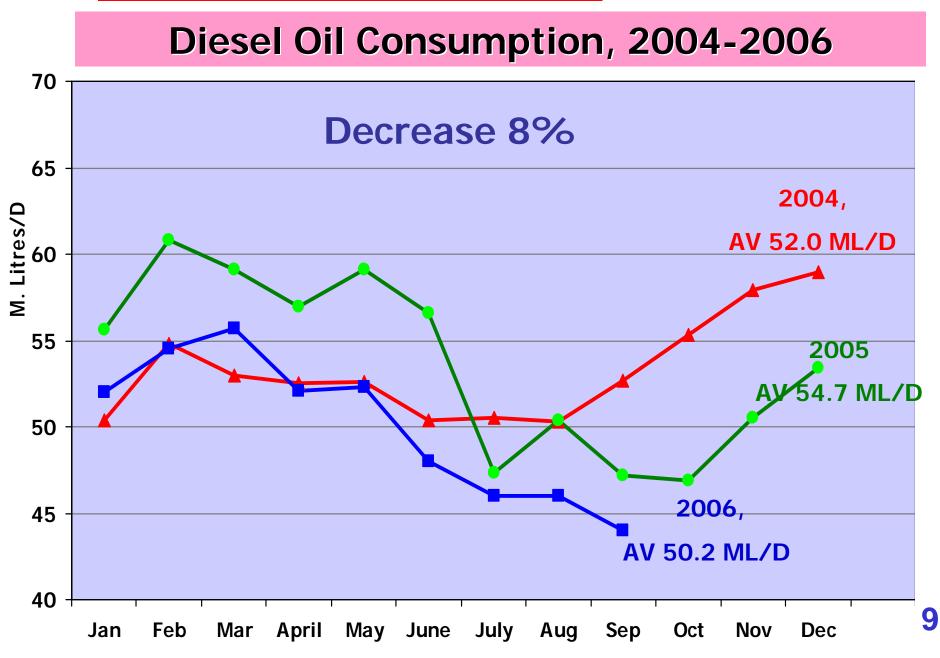
Final Energy Consumption by Type (ktoe)

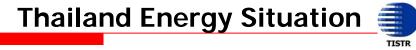
Commercial Energy	51,571	NRE 17%
Coal	6,755	
Petroleum Product	32,460	CE
Natural Gas	2,026	83%
Electricity	10,330	
New & Renewable Energy	10,824	
Total Energy Consumption by Type	62,395	
	Natural Gas 4%	Electricity 20% Petroleum Product 63%


Final Energy Consumption by Economic Sectors (ktoe)

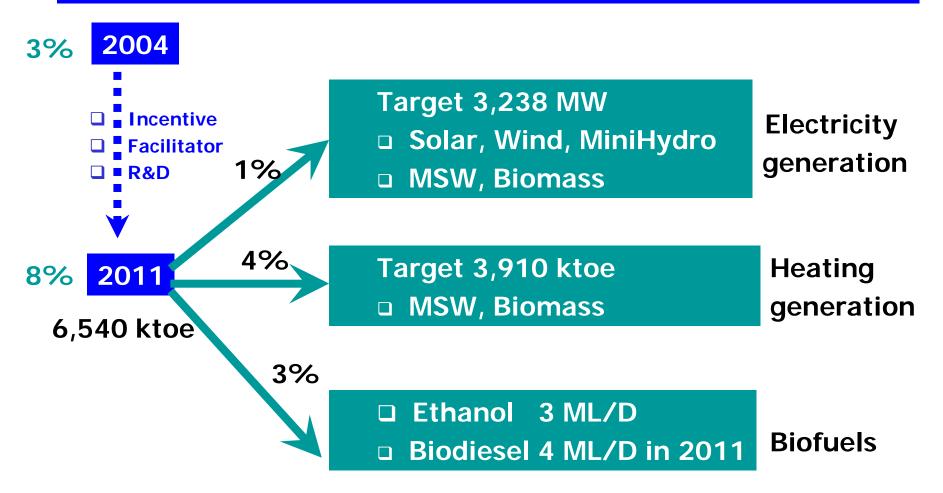
Sectors	2001	2002	2003	2004	2005
Transportation	18,632	19,636	20,927	22,812	23,491
Manufacturing	16,922	18,679	19,988	21,961	22,641
Residential & Commercial	10,920	11,377	11,799	12,667	12,779
Agriculture	2,847	3,032	3,308	3,520	3,207
Mining & Construction	221	255	267	302	277
Total	49,542	52,979	56,289	61,262	62,395


Energy Consumption by Economic Sectors in 2005




Gasoline Consumption, 2004-2006

Thailand Energy Situation



1996	Launching unleaded gasoline
1998	Reduce sulfur content in diesel oil from
	3% to 2%
1999	Reduce sulfur content in diesel oil from
	0.5 % to 0.05 %
2000	Cabinet approved the establishment of ethanol plant for fuel
2004	Reduce sulfur content in diesel oil from
	0.05 % to 0.035 %
2005	Declaration of biodiesel standard and start the sale of biodiesel

Target of NRE in 2011*


* Cabinet Resolution on June 8, 2004, www.dede.go.th

The Use of Biofuel in Thailand 🚎 **Renewable Energy in Transport Sector Biodiesel Ethanol** + Gasoline + Diesel oil Gasohol Diesohol **B5 E10 Gasoline engine Diesel engine** 2

Strategic Plan for Ethanol Promotion

Targeting the use of gasohol 4 ML/D by 2005 or Ethanol 0.4 ML/D in 2005 Expansion the number of gasohol service station to 4,000 stations by 2005

* Cabinet resolution on April 19, 2005

2005*

2007

Fuel Ethanol Plants in Thailand

Name of the company	Location	Raw Materials	Capacity (L/D)
On-going Production			855,000
Porn Wilai Co., Ltd.	Ayuthaya	Molasses	25,000
Thai Alcohol Co., Ltd.	Nakhon Pratum	Molasses	200,000
Thail Agro Energy Co., Ltd.	Suphan Buri	Molasses	150,000
Thai Nguan Ethanol Co., Ltd.	Khon Khaen	Cassava	130,000
Khon Khaen Alcohol Co., Ltd.	Khon Khaen	Sugar, Molasses	150,000
Petro Green Co., Ltd.	Chaiyaphum	Sugar, Molasses	200,000
Starting Production by the	first quarter of 200)7	260,000
Thai Sugar Ethanol	Kanchana Buri	Molasses	100,000
Fa Kuan Tip Co. Ltd.	Prachinburi	Cassava	60,000
Ekarat Patana	Nakhon Sawan	Molasses	100,000

as of January 2007

THAILAND: Gasoline Service Station

Number of Gasohol Service Stations (E10)

		2. B
BKK	694	3. S
Outside BKK	2,751	4. T
Total		5. E
Total	3,445	6. C
		7. C
		8. P
		9. S
		10. 5
as of November 2	2006	tota

1. PTT	1209
2. Bangchak	693
3. Shell	548
4. TPI	38
5. ESSO	489
6. Chevron	293
7. Conoco	88
8. Petronas	55
9. Siam Saha Service	20
10. Southern Fuel	12
total	3,445

TISTR

Gasohol Selling Volume (E10)

Years	Gasohol s	elling	Target	
	Million Litres	ML/Day	ML/Day	
2001	1.6	0.004	-	
2002	0.5	0.001	-	
2003	2.6	0.007	-	
2004	59.6	0.163	-	
2004	674.9	1.85	4.0	
2005	1,056.9	3.5	4.0	

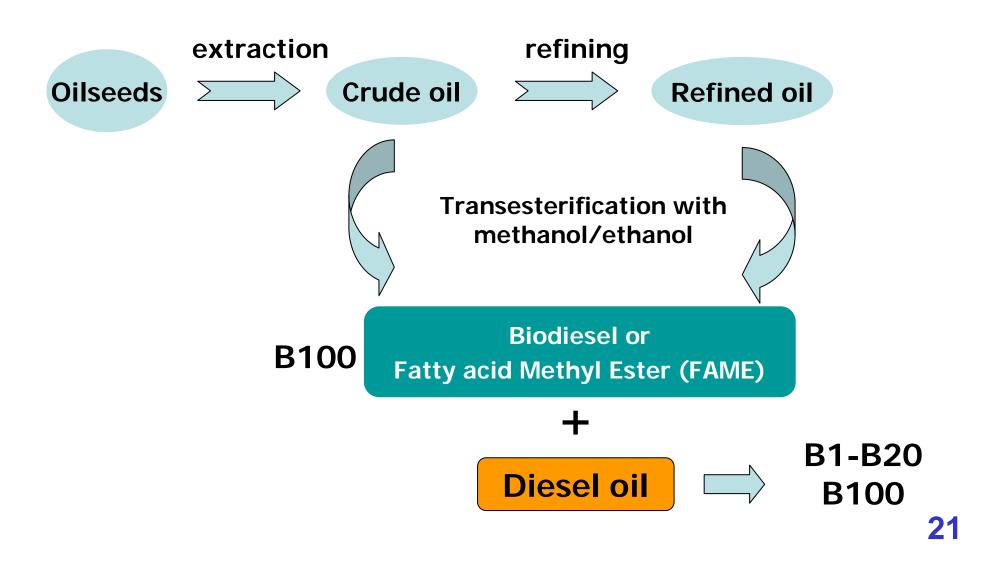
as of November 2006

Standard Specification of Gasohol

	Fuel properties	Limit	· ·	ation of ohol
			Octane 91	Octane 95
1.	Octane number			
	1.1 Research Octane Number, RON			
	Distributor, at delivery location	min	91.0	95.0
	Dealer	min	90.6	94.6
	1.2 Motor Octane Number, MON			
	Distributor, at delivery location	min	80.0	84.0
	Dealer	min	79.6	83.6
2.	Lead Content, g/L	max	0.013	0.013
3.	Sulfur Content, g/L	max	0.05	0.05
4.	Phosphorus Content, g/L	max	0.0013	0.0013
5.	Corrosion	max	No. 1	No. 1
6.	Oxidation Stability, minutes	min	360	360
7.	Solvent Washed Gum, mg/100 mL	max	4	4

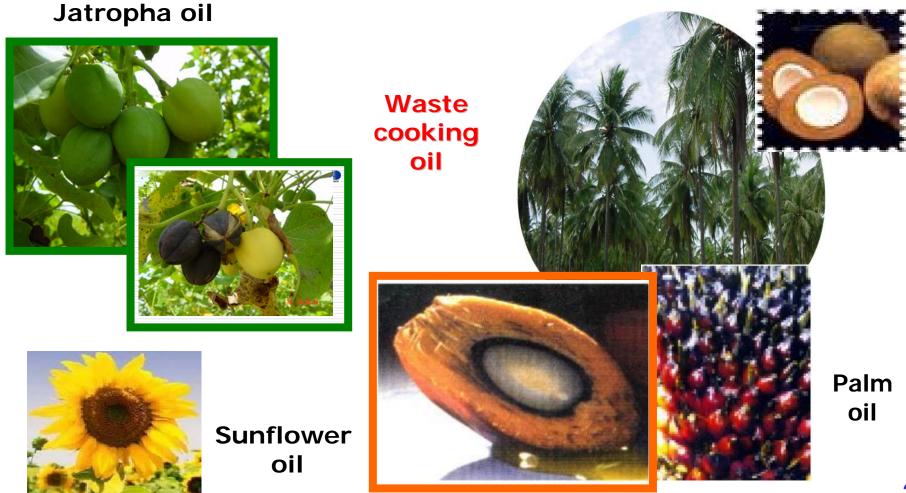
Standard Specification of Gasohol (Cont.)

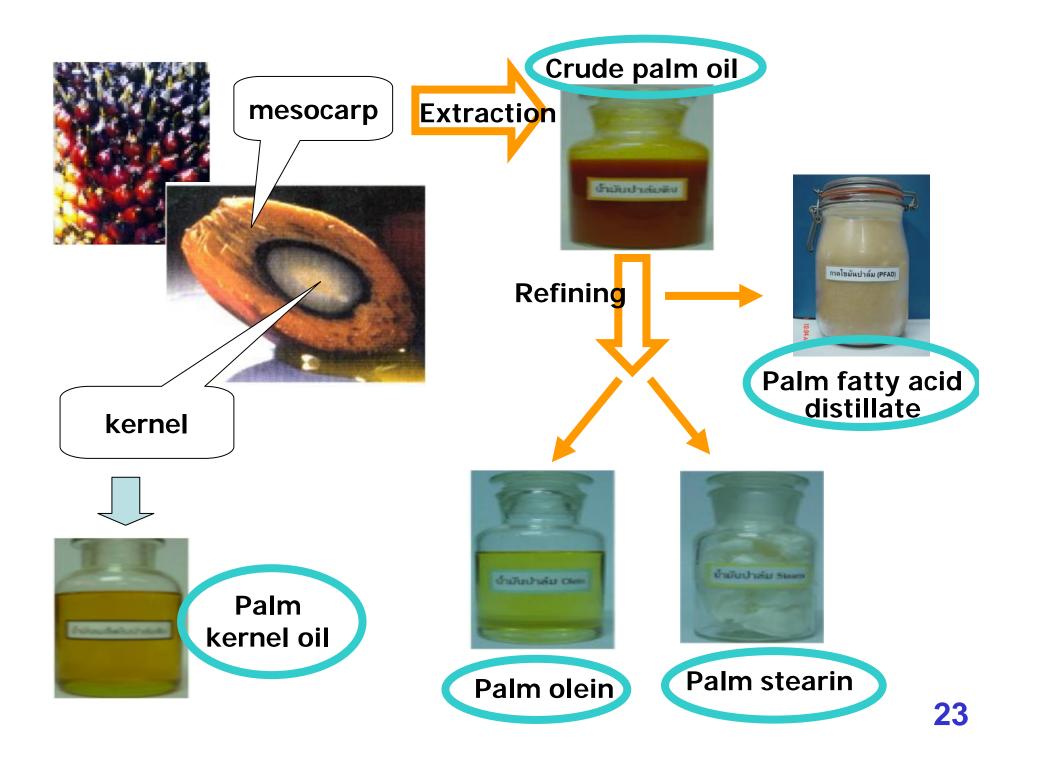
	Fuel properties		Limit	Octane 91	Octane 95
8.	Distillation				
	8.1 Temperature, °C	10% Evaporated	max	70	70
		50% Evaporated	min	70	70
			max	110	110
		90% Evaporated	max	170	170
		End Point	max	200	200
	8.2 Residue, %vol.		max	2.0	2.0
9.	Vapour Pressure @37	.8ºC, kPa	max	62	62
10.	Benzene Content, %	ol.	max	3.5	3.5
11.	Aromatic Content, %	/ol.	max	35	42
	From J.	anuary 1, 2008	max	35	35
12.	Color 12.1 H	ue		green	orange
	12.2 D	ye Content, mg/L	min	4.0	10.0
13.	Water Content, %wt.		max	0.7	0.7
14.	Denatured Ethanol, %	Svol.	min	9	9
			max	10	10


The National Strategic Plan for Development and Promotion on the Use of Biodiesel

- 1. Community-based biodiesel production: to be used for agricultural machines in the communities
- 2. Commercial-based biodiesel production:

the target of 8.5 ML per day by 2012*


Biodiesel for diesel engine



Potential feedstocks for biodiesel production in Thailand

Coconut oil

22

Biodiesel from various oils

Standard Specifications of Biodiesel for Agricultural Engines

Item	Fuel properties,	Unit	Standa	rd limit
1.	Density at 15° C	kg/m³	min	860
			max	900
2.	Viscosity at 40°C	CSt	min	1.9
			max	8.0
3.	Flash Point	°C	min	120
4.	Sulphur	% wt.	max	0.0015
5.	Cetane Number		min	47
6.	Sulfated Ash	% wt.	max	0.02
7.	Water and sediment	% vol.	max	0.2
8.	Copper Strip Corrosion		max	No. 3
9.	Acid Number	mg KOH/g	max	0.80
10.	Free glycerin	% wt.	max	0.02
11.	Total glycerin	% wt.	max	1.5
12.	Colour			Purple
13.	Additive		Approved by	y DG of DOEB

Standard Specifications of Biodiesel - FAME

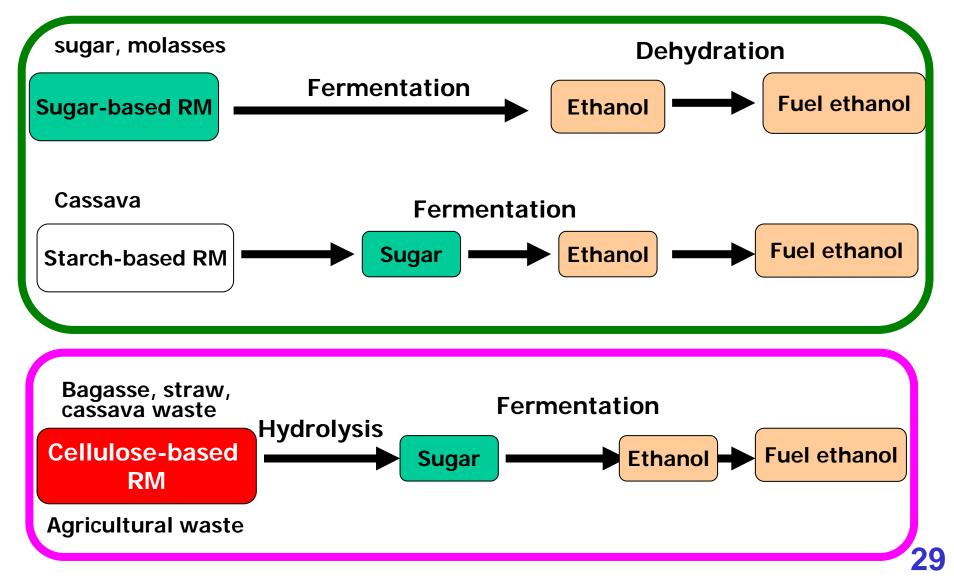
Item	Fuel properties	Unit	Standa	rd limit
1.	Methyl Ester	% wt.	min	96.5
2.	Density at 15° C	kg/m³	min	860
			max	900
3.	Viscosity at 40°C	CSt	min	3.5
			max	5.0
4.	Flash Point	°C	min	120
5.	Sulphur	% wt.	max	0.0010
6.	Carbon Residue, on 10% distillation residue	% wt.	max	0.30
7.	Cetane Number		min	51
8.	Sulfated Ash	% wt.	max	0.02
9.	Water	% wt.	max	0.050
10.	Total Contaminate	% wt.	max	0.0024
11.	Copper Strip Corrosion		max	No. 1
12.	Oxidation Stability at 110°C	hours	min	6

Standard Specifications of Biodiesel - FAME

Item	Fuel properties	Unit	Standar	d limit
13.	Acid Value	mg KOH/g	max	0.50
14.	Iodine Value	g Iodine/100 g	max	120
15.	Linolenic Acid Methyl Ester	% wt.	max	12.0
16.	Methanol	% wt.	max	0.20
17.	Monoglyceride	% wt.	max	0.80
18.	Diglyceride	% wt.	max	0.20
19.	Triglyceride	% wt.	max	0.20
20.	Free glycerin	% wt.	max	0.02
21.	Total glycerin	% wt.	max	0.25
22.	Group I metals (Na+K)	mg/kg	max	5.0
	Group II metals (Ca+Mg)	mg/kg	max	5.0
23.	Phosphorus	% wt.	max	0.0010
24.	Additive		Approved by	DG of DOEB

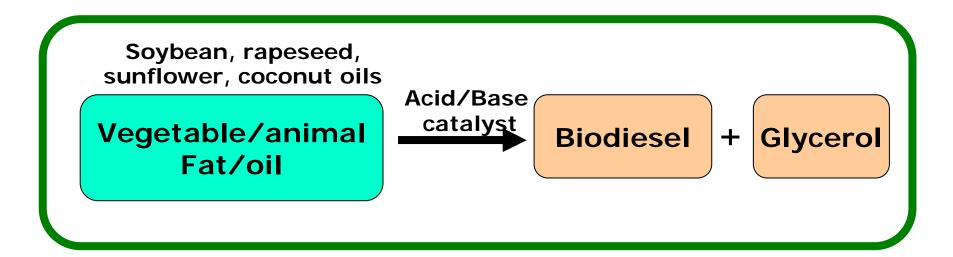
THAILAND: Biodiesel Service Station

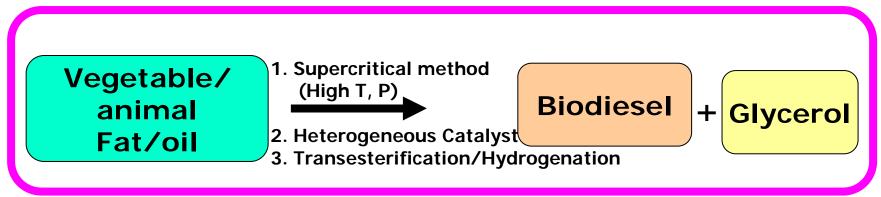
30 stations



145 stations

Biodiesel B5 selling: 3.4 ML in October 2006




Ethanol Production

Biodiesel Production

Future Technology Issues

Fatty acid composition of BDF from various feedstocks in Thailand

	BDF from						
Fatty acid	Crude palm oil	Crude coconut oil	Jatropha oil	Palm stearin	Palm olein	Soybean oil	Sunflower oil
Caproic acid, C8:0	-	7.42	-	-	-	-	-
Capric acid, C10:0	-	5.78	-	-	-	-	-
Lauric acid, C12:0	0.35	49.75	-	0.25	0.37	0.1	-
Myristic acid, C14:0	0.92	18.75	-	1.27	0.91	0.2	0.1
Palmitic acid, C16:0	44.11	8.60	14.85	59.19	38.53	10.7	6.0
Stearic acid, C18:0	4.36	2.65	7.43	4.43	0.08	3.9	4.0
Arachidic acid, C20:0	0.09	0.18	0.08	0.31	0.13	Other = 0.2	Other = 1.1
Sum of Saturated FA	49.83	93.13	22.36	65.45	40.02	15.1	11.2
Palmitoleic acid, C16:1	-	-	-	0.08	-	0.3	<1.0
Oleic acid, C18:1	38.97	5.53	47.65	28.61	58.13	22.8	16.5
Linoleic acid, C18:2	11.21	1.26	29.80	5.86	1.78	50.8	72.4
Linolenic acid, C18:3	-	0.07	0.19	-	0.07	Other = 6.8	Other = 0.6
Sum of Unsaturated FA	50.18	6.86	77.64	34.55	59.98	80.7	90.5

TISTR

Joint Research Between

the Thailand Institute of Scientific and Technological Research (TISTR), Thailand,

MTEC, Thailand and the Energy Technology Research Institute (ETRI) of AIST, Japan

Biodiesel Fuel and Clean Engine:

Standardization and Upgrading of BDF Quality

Joint study on:

- Development of standards for biodiesel fuel quality and standards for ensuring BDF quality
- Development of BDF
 upgrading including the novel BDF
 production technologies

JOINT RESEARCH: Biodiesel Fuel and Clean Engine: Standardization and Upgrading of BDF Quality

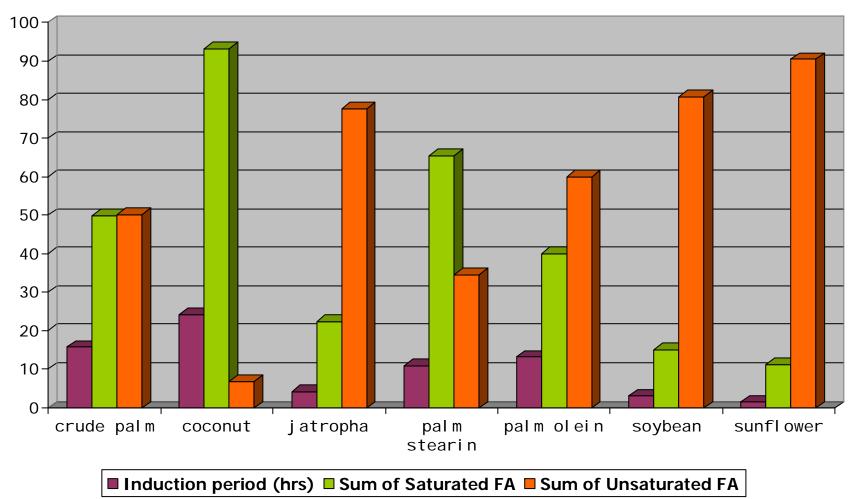
Study on fuel properties during storage:

oxidation stability, acid value, viscosity

Development of biodiesel upgrading technologies

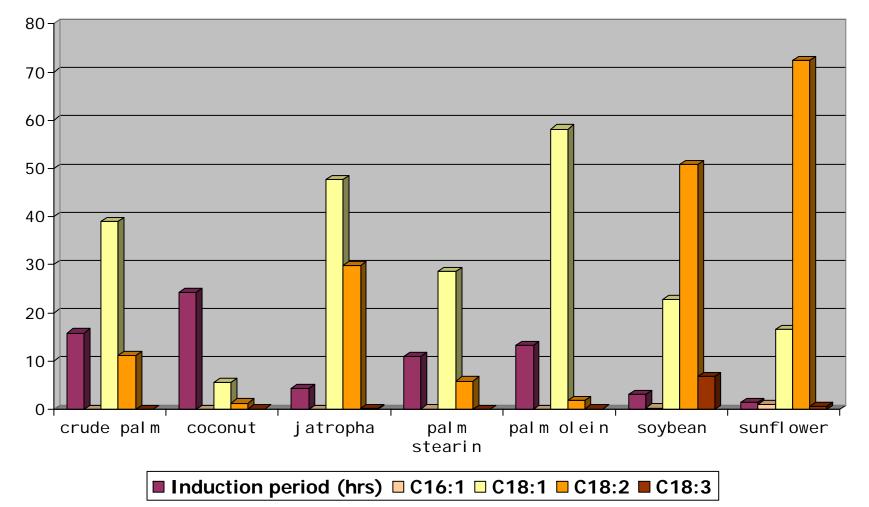
Hydrogenation

Heterogeneous Catalyst



Oxidation Stability of BDF from various oils

Biodiesel	Induction Period at 110°C (hrs)			
Crude palm oil	15.78			
Crude coconut oil	24.19			
Jatropha oil	4.26			
Palm stearin	10.98			
Palm olein	13.19			
Soybean oil	3.11			
Sunflower oil	1.43			



Induction period VS amount of saturated FA

Induction period VS amount of unsaturated FA

Demonstration: Bus at AIST using BDF Fuel

Conclusion

- Strong government incentives and supports
- Extending and enhancing plantation productivity for ethanol and biodiesel feedstocks
- Add value to the byproducts of biofuel productions
- Investigate and promote new feedstocks; i,e.
 - Cellulosic feedstock, for ethanol
 - Sweet sorghum, for ethanol
 - □ Jatropha nut, for biodiesel