Observed and Projected Global Climate Change and its Regional Impacts

Johann Feichter

Max Planck Institute for Meteorology

Hamburg, Germany

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

OUTLINE

Is there Observational Evidence for Climate Change?

- temperature trends
- precipitation trends
- extreme events
- Use of Numerical Models to Separate Cause and Effect
- Future Projections

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Surface Temperature Change

Proc. Natl. Acad. Sci. USA 103, 14288-14293

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Surface Temperature Change

2001-2005 Mean Surface Temperature Anomaly (°C) compared to 1951-1980 Global Mean = 0.54

Hansen, James et al. (2006) Proc. Natl. Acad. Sci. USA 103, 14288-14293

5th JCAP Conference

Johann Feichter

Max-Planck-Institut für Meteorologie Max Planck Institute for Meteorology

4

22nd - 23rd February, 2007 Tokyo

Precipitation Change

percentage change

IPCC 4AR, WG1, Trenberth et al., 2007

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Max-Planck-Institut für Meteorologie

5

over 70% of the global land area

significant decrease in the annual occurrence of cold nights and

significant increase in the annual occurrence of warm nights

- small increase of temperature maxima

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Max-Planck-Institut für Meteorologie

Precipitation Extremes

Regions where disproportionate changes in heavy and very heavy precipitation during the past decades were documented

Groisman et al., JClim 2005

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

1. internal variability

non-linear dynamics – chaotic

2. forced variability

natural forcings –

volcanic eruptions, change in the solar constant, change in the orbital parameters

anthropogenic forcings -

land-use changes, emissions of greenhouse gases and aerosol particles

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Can we attribute observed climate change to human activities?

Can we separate internal variability, and response due to natural and anthropogenic perturbations?

→ Numerical Climate Models "anthropogenic fingerprint"

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Method of Climate Modeling

we integrate knowledge about some aspects of the climate system in a mathematical framework and conduct computer simulations.

Computer Simulations predict the behaviour of the model system to given sets of boundary conditions and input parameters.

Earth System Models are the Laboratories of Geoscientists

we perform "experiments"

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

1. Proof model results by comparison to observations

2. Perception by the public

Make the evaluation process transparent by distributing results and model codes and by joining model intercomparisons.

Introduce standard procedures

Assess the confidence of statements about science

 \rightarrow

IPCC procedure

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

IPCC procedure to assure quality

- Define a set of scenarios
- Collect all model results
- Data processing and distribution
- Open access on request

PCMDI - Program for Climate Model Diagnosis and Intercomparison

 \rightarrow ~ 550 projects applied for data access

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Max-Planck-Institut für Meteorologie

Model Simulations of Future Climate

- Emission scenarios
- Simulation of past climate 1860 2000
- ► Future projections 2001 2100

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Earth System Model – MPI Hamburg

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Max-Planck-Institut für Meteorologie

Socio-Economic Scenarios

IPCC SRES Scenarios: CO2 Concentrations used for AR4 Simulations

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Max-Planck-Institut für Meteorologie

Black Carbon: 0.0 Tg (1861-1890)

Sulfate: 0.9 Tg(S) (1961-1990)

Sulfate: 1.2 Tg(S) (2021-2050)

POM: 3.5 Tg (2021-2050)

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

IPCC SRES Scenarios: Temperature Change relative to 1961-1990

22nd - 23rd February, 2007 Tokyo

5th JCAP Conference

Institut für Matsanalasia

Johann Feichter

17

22nd - 23rd February, 2007 Tokyo

Johann Feichter

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

July January © DKRZ / MPI-M / M&D -10 -5 5 10 -30 30 50 -50

A1B: Mean Precipitation Change [%] for 2071-2100 compared with 1961-1990

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

22nd - 23rd February, 2007 Tokyo

Percentage change of dry periods

2071-2100 compared to 1961-1990

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Percentage change of annual extreme precipitation (5 days)

2071-2100 compared to 1961-1990

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

Summary

- greatest temperature increase at high northern latitudes and over continents
- more heat waves
- evaporation and precipitation increase
- more precipitation in high latitudes and in the tropics
- less precipitation in the subtropics
- summer drying over mid-latitude continents

East Asia:

- b daily maximum and daily minimum temperatures will very like increase
- more non-precipitating days in winter
- more frequent heavy rainfall in summer

5th JCAP Conference

22nd - 23rd February, 2007 Tokyo

Johann Feichter

