Zbigniew Klimont

International Institute for Applied Systems Analysis, Laxenburg, Austria

European Emission Inventories

Development, validation, future goals and needs

4th JCAP Conference, Tokyo, 1-2 June, 2005

Air pollution policy processes in Europe

- **1979:** UN/ECE Convention on Long-range Transboundary Air Pollution (CLRTAP) signed
- **1983:** European Monitoring and Evaluation Programme (EMEP) established
- **1985-2001:** A number of Protocols signed under the CLRTAP; SO₂ (1985, 1994), NO_x (1987), NMVOC (1991), HM (2001)
- **1997:** EU Acidification Strategy
- **1999:** Protocol to Abate Acidification, Eutrophication and Ground-level Ozone of CLRTAP (*Gothenburg Protocol ratified 17 May 2005*)
- **2001:** EU National Emission Ceilings Directive (SO₂, NO_x, NH₃, NMVOC)
- **2005:** EU Clean Air For Europe (CAFE) strategy proposed (includes for the first time targets for Particulate Matter emissions)
- **2006:** Review of the EU NEC Directive and Gothenburg Protocol

Brief history of recent European emission inventories... (1)

- Until recently only highly aggregated national emission data were available to the international community, exceptions were:
 - **MAP** inventory for 1985 (covered EU-12)
 - PENTAGONALE inventory for 1989 (six Central European countries); emission factors, activity data and LPS
 - CORINAIR 1990, 1994 (28 countries); also emission factors, activity data, LPS
- At the end of 80's the development of the *Emission Inventory Guidebook* was initiated; continues until today

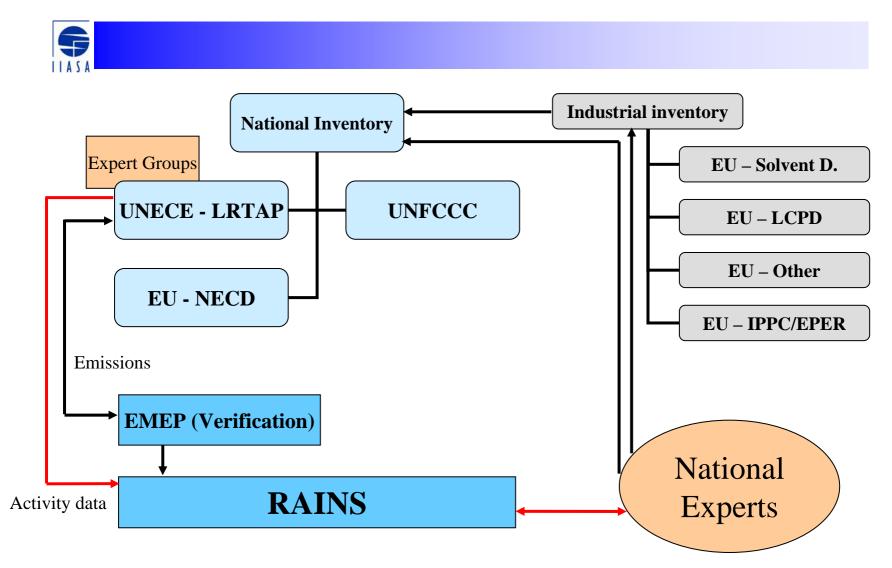
Brief history of recent European emission inventories... (2)

- Signature of the *Gothenburg Protocol* and *NEC Directive* was followed by "louder" demands for improved transparency and validation of emission inventories,
- Following the example of the UNFCCC (CRF reporting) CLRTAP asked its Task Forces to establish new reporting guidelines where activity data and emissions would be reported simultaneously in a format broadly compatible with UNFCCC/CRF but maintaining specific needs of the CLRTAP....and so the NFR was born.

Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook

- An important document that leads to improvement of transparency and comparability of emission estimates,
- First edition published in 1994, current 3rd edition available from the EEA web site
- The Guidebook provides a default set of emission characteristics for air pollutants,
- Different level of coverage for pollutants, e.g., not complete for particulate matter,
- It is important to secure resources for continuous update,

Validation

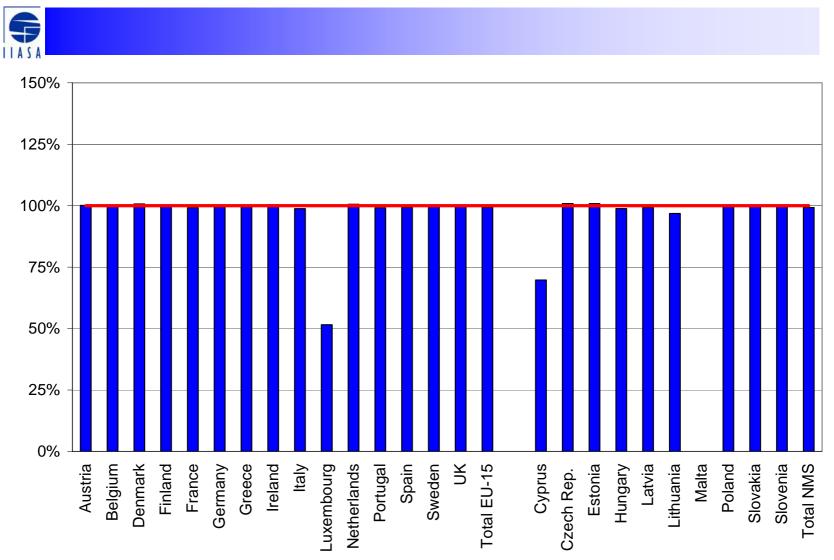

EMEP performs validation checks upon receiving data and does further consistency verification

- Q&A with Member States during the annual submission process
- Principal consistency checks performed annually assuring comparability of data
- A more detailed review performed every five years involving modelling team from CIAM

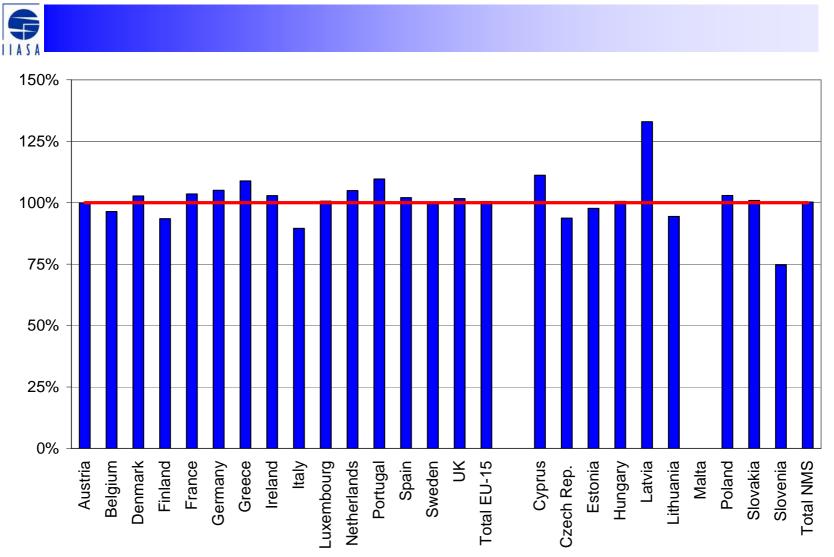
Within CAFE and NEC review process RAINS model used to reproduce national submissions to CLRTAP and NEC Directive

- Questionnaires to Member States on behalf of EMEP
- Bilateral consultations
- In most cases good overall fit, some discrepancies in sectoral estimates remain
- RAINS maintains international consistency; discrepancies to national estimates are documented

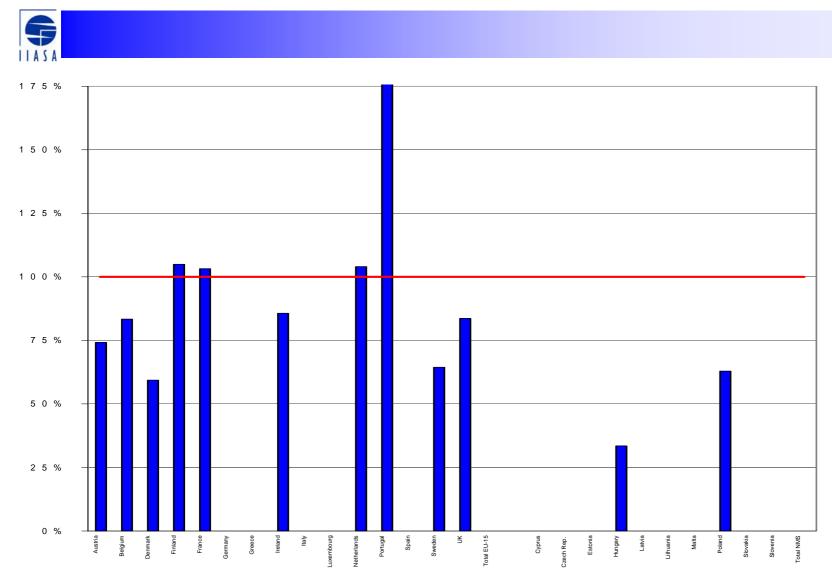
Data flow



Example for UK Adjustments of SO₂ and NO_x emissions in RAINS


RAINS emission estimates for NO_x

vs. national inventories, 2000


RAINS emission estimates for VOC

vs. national inventories, 2000

RAINS emission estimates for PM_{2.5}

vs. national inventories, 2000

PM10 emission sources

Some of the remaining questions on emissions

- Still poor information on size and chemical speciation of PM emissions (crucial for atmospheric modeling and impact assessment),
- Possible underestimation of a number of non- (or poorly)regulated sources, e.g., small industrial combustion plants, offroad sources, residential combustion,
- Sea shipping and recreational shipping emissions,
- 'Real life' reduction efficiencies, e.g., NOx-HDT, PM-DPM, etc.,
- Spatial and temporal distribution is still a problem child for some activities,
- Questions of applicability of western methods (and assessments) to the non-EU25 countries largely remain.
- And more...

Task Force on Emission Inventories and Projections Emission Inventory Guidebook

- The Guidebook does not appropriately cover PM methodologies
- A number of PM sources are missing in reporting formats and guidebook; several of them, however, relevant only for coarse particles, e.g., animal houses and crop production, construction, sawmills, coal production

Priorities have been identified:

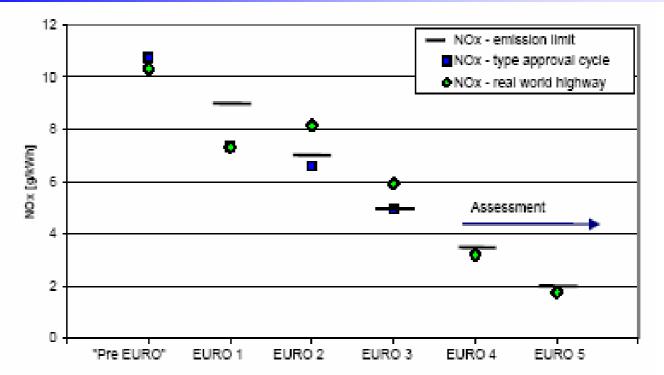
- Small-scale and industrial combustion
- Processes in iron and steel industries
- Off-road sources
- Burning of agricultural residues
- Validation of factors across UNECE area

• Establishment of a PM Task Group under TFEIP to *i.a.*

- Review the immediate requirements of modelers, e.g., chemical and size speciation
- Propose priorities for methodology development

How uncertain are emissions?

Examples of recent uncertainty estimates of national emissions



95% confidence intervals

	19	90		20)10	
Pollutant	IIASA, 2000	Rypdal, 2002	IIASA, 2000	Rypdal, 2002	CITEPA, 2002	Syri et al, 2000
SO ₂	6-23	4	9-36	5	10	5
NO _x	8-26	12	10-33	12	46	15
NH ₃	9-23	21	12-33	21	80	40
NMVOC	9-26	18	12-33	15	30	-

How uncertain are emissions? EURO II, III for Heavy Duty Vehicles case

Source: Hausberger et al., 2003

- Problems to meet NEC and Gothenburg Protocol obligations in several countries
- The EU insists that if reductions cannot be achieved in transport sector, other sources have to be reduced further

Sensitivity Analysis for UK and Swiss Emission Estimates

95 percent confidence intervals in national emissions if only uncertainties of a particular parameter are considered.

United Kingdom				
	SO_2		NO _x	
	1990	2010	1990	2010
Activity data	±8 %	±14 %	±5 %	±8 %
Emission factors	±7%	±6 %	±9 %	±7 %
Removal efficiency	±0 %	±3 %	±0 %	±3 %
All factors considered	.11.07	15 07	10.07	±11.0%
	±11%	±15 %	±10 %	±11 %
Switzerland		±15 %		±11 %
	S	D ₂	N	O _x
Switzerland	S0 1990	D ₂ 2010	N 1990	O _x 2010
Switzerland Activity data	S0 1990 ±7 %	D ₂ 2010 ±11 %	N 1990 ±6 %	O _x 2010 ±9 %

Discussion

Where input from the emission inventory community is needed the most

- Assessment of the uncertainty in input parameters;
- Assessment of probability of failure to comply with emission standards;
- Verification of country-specific parameters in models, e.g. how representative are model technologies;
- How well the assumptions adopted in a model represent legislation?

What will be the future questions asked to IAM and does it imply need for new type/quality of data?

For example:

- Health related studies... spatial resolution;
- Regional and global pollutants...coordination of efforts to ensure comparability, transparency, etc

• • • • •

Recent developments

- Stronger focus on effects of aerosols, in particular health effects, over the last years
- Health impacts from particulate matter at a center of the strategy developed within the European Clean Air for Europe programme (CAFE);
- During the revision of the National Emission Ceiling (NEC) Directive the Commission is carefully looking into how a ceiling would be established for PM2.5 emissions in 2015
- Currently main focus is on particle mass by size (PM₁₀, PM_{2,5}); Data on chemical speciation (e.g. BC and OC) is considered as useful information, but have been of second priority so far; used for modeling purposes only

Further steps to improve PM inventories

- To a large extent PM inventories can be produced using the same methodologies as other pollutants, but
 - There are additional sources
 - To achieve acceptable accuracy, more information is needed about combustion technologies; Data on chemical speciation are often not available from the same studies as the size speciation and emission factors
- Need for more measurements
- Working to improve methodology guidance over the next years
 - New resources may become available; driven by the current policy debate
 - EC research initiative to know more about the chemical speciation may take place in the years to come