APBF-DEC Lubricants Project

Presented by: Shawn D. Whitacre, NREL

> Presented at: 4th JCAP Conference Tokyo, Japan June 1, 2005

APBF-DEC Participants

Government

- DOE
- NREL
- ORNL
- EPA
- CARB
- SCAQMD

Automobile

- Ford
- GM
- DaimlerChrysler
- Toyota

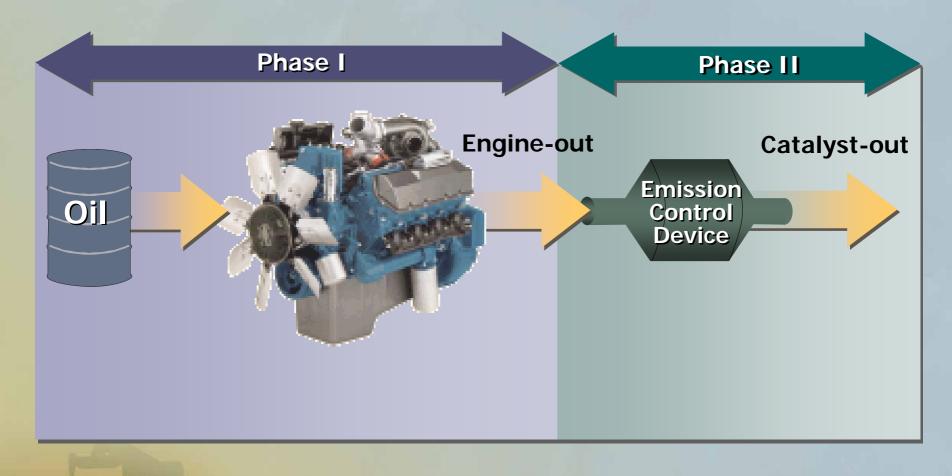
Emission Control

MECA · Johnson Matthey
Delphi · 3M · Engelhard
Siemens · Benteler · ArvinMeritor
Clean Diesel Tech. · Corning
Donaldson Co. · OMG
NGK · Rhodia · Argillon
Tenneco Automotive · Robert Bosch

Technology

Battelle

Engines


- EMA
- Caterpillar
- Detroit Diesel
- Cummins
- John Deere
- Mack Trucks
- International Truck & Engine

Energy/Additives

- API
 American Chemistry Council
 - BP
 Castrol
 ChevronOronite
 - Chevron
 · Ciba
 · Ergon
 - Afton
 ExxonMobil
 Infineum
 - Lubrizol Marathon Ashland
 - Motiva
 NPRA
 - Pennzoil-Quaker State
 - Shell Global Solutions Valvoline
 - ConocoPhillips Crompton

Two-Phase Approach

Objectives

Determine the impact of lubricant properties and composition on engine-out/catalyst-in emissions

- Part 1: Characterize effects of lubricant properties on engine out emissions
- Part 2: Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Phase II

Determine if lubricant formulation impacts the performance and durability of diesel engine ECS

Desired Outcome

Determine which (if any) lube derived emission components are detrimental to ECS performance and durability

The results will provide:

Guidelines for Iubricant formulation	Design guidelines			
Basestock selectionAdditive chemistry	 Engine manufacturers ECS suppliers 			

Phase 1

Lubricant Selection Phase 1Base Oils

Group I: Valero (Paulsboro)

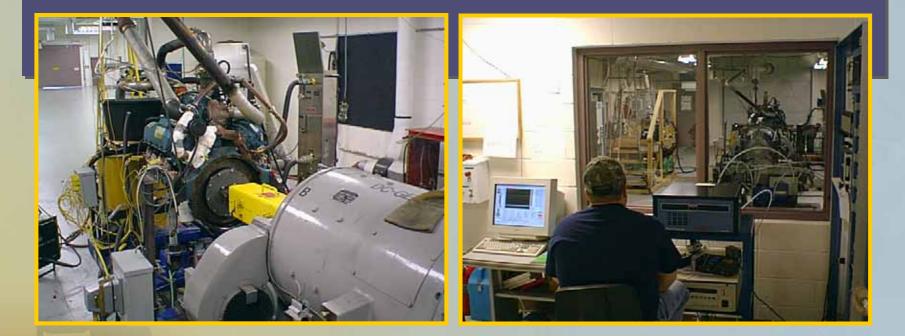
- 4800-5600-ppm S, 75% saturates
- Group II: Excel (Lake Charles)
 - <20-ppm S, >99% saturates
- Group III: Motiva (Port Arthur, TX)
 - <5-ppm S, >99% saturates

Group IV: BP

- PAO (poly-alpha olefin, synthetic)
- 0 sulfur
- 5% ester for additive solubility (from Uniqema)

Lubricant Selection Additive Packages

Five suppliers (Ciba, Chevron, Ethyl, Infineum, and Lubrizol) provided specifications on 26 candidate additive packages


Range of constituents (in Group II base oil)

Ash	0 – 1.85%
Sulfur	0 – 6590-ppm
Calcium	0 – 4770-ppm
Zinc	0 – 1900-ppm
Phosphorus	0 – 1700-ppm
Magnesium	0 – 1700-ppm
Boron	0 – 1235-ppm

Supplier and source of constituents not specified

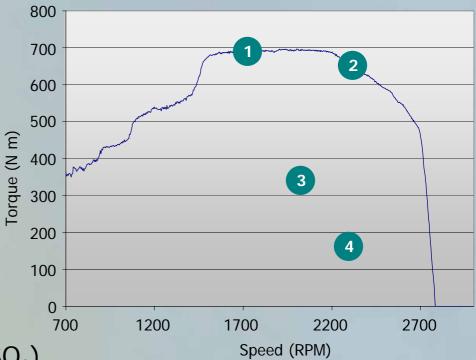
Test Laboratory – Phase I

Subcontractor: Automotive Testing Laboratories, (East Liberty, OH)

Test Engine

1999 International T444E

- 7.3L OHV V-8
- Direct injection, turbocharged w/ wastegate
- HEUI fuel system
- 215 hp at 2400 rpm
- 540 ft-lbs torque at 1500 rpm
- Exhaust gas recirculation (retrofit)
- Closed crankcase ventilation with filter
- Lube system capacity: 18 quarts

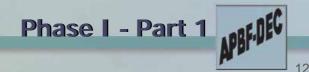

Phase I - Part 1

Test Modes and Emissions Measurements

- Four Mode Steady-State (OICA)
 - Mode 1: Rated Condition
 - Mode 2: High Torque
 - Mode 3: Road Load
 - Mode 4: Low Torque

Emissions Measurements

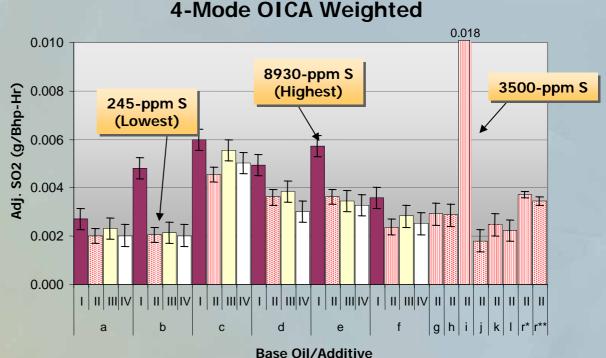
- Gases (HC, CO, CO₂, NO_x, SO₂)
- PM three sampling trains
 - TPM, SOF, SO₄
 - Metals
 - PAHs



Phase I - Part 1

Data Analysis Questions #1 and #2

Are there significant differences in engine-out emissions that can be attributed to oil properties?


If so, how much of an impact is due to properties of the additive package? ... base oil?

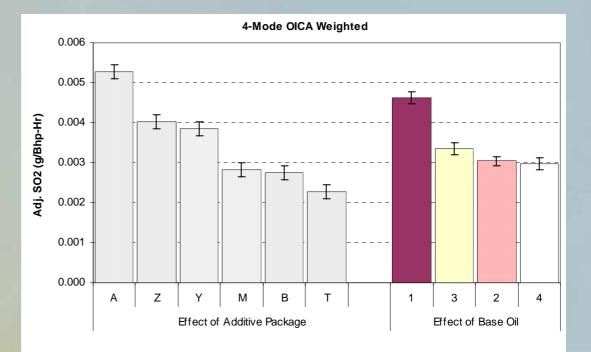
SO₂ Emissions – Significant Additive and Base Oil Effects

Additive packages c and i produced highest SO₂ emissions

- Significant base oil effect – Group 1 highest
- Magnitude of the effects do not directly correlate with sulfur content of oil

Phase I - Part 1

13

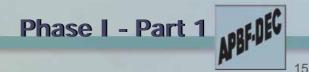

*Pre-aging. **Post-aging.

Also... Significant Effects of Additive Packages and Base Oils on SO₂

 Many significant differences among the 6 additive packages tested in all four base oils

- Significant base oil effect – Group 1 highest
- No significant interactions between additive packages and base oils

Main Effects of Additives and Base Oils



Phase I - Part 1

Data Analysis Question #3

3

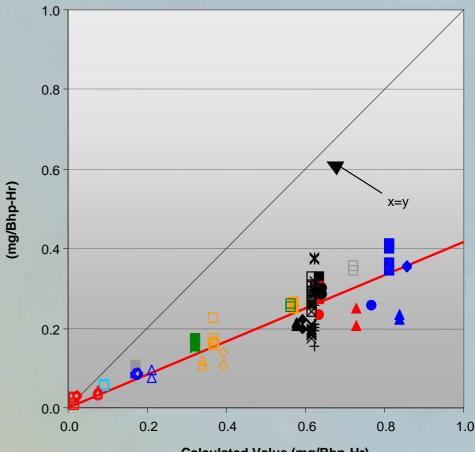
Which emissions species can be directly predicted from the properties of the oil and fuel?

Mass Balance

Emissions from fuel and oil consumptions and wear metals

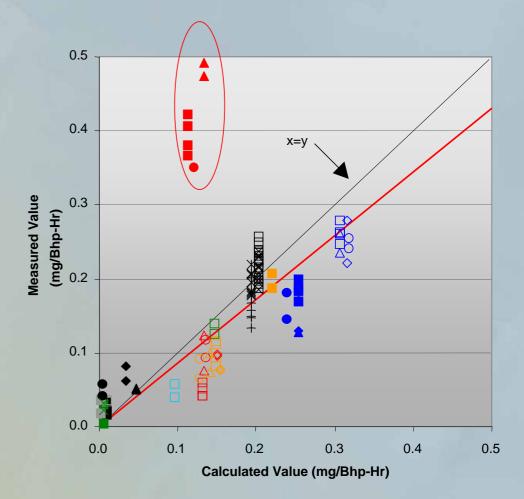
Recovery rates obtained by comparing measured emissions with calculated values based on fuel and oil properties

Phase I - Part 1


Ca Mass Balance

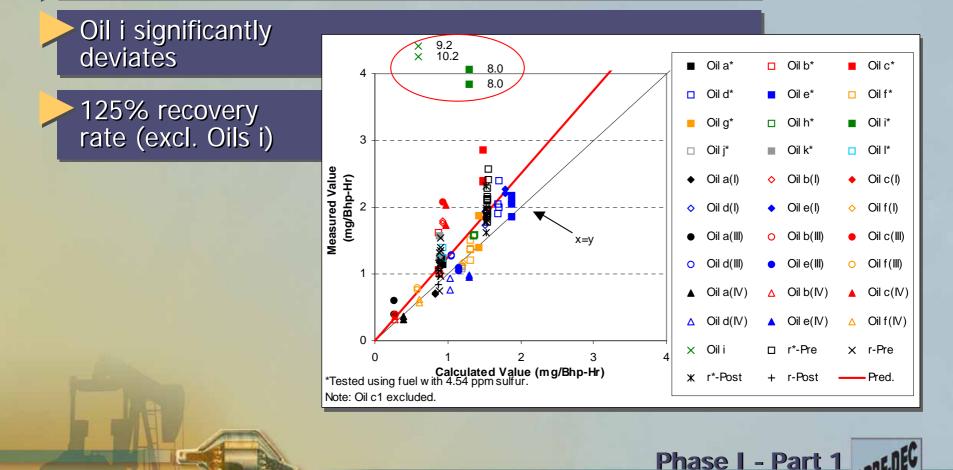
No apparent composition effects

Measured Value


42% recovery rate

Calculated Value (mg/Bhp-Hr)

- **P** Mass Balance
 - P emissions directly correlated with concentration in oil
 - Oil c2, c3 and c4 deviate significantly


86% recovery rate (excl. Oils c2, c3 and c4)

Phase I - Part 1

Sulfur Mass Balance (continued)

S emissions directly correlated with concentration in oil

Phase I Conclusions

Lubricant formulation has modest effects on regulated emissions

- <u>+10% for CO and NO_x, +20% for PM, and +30% for HC</u>
- Sulfur content in the oil has significant effects on sulfur emissions.
- However, oil formulation (beyond oil sulfur content) can have a significant impact on SO₂ emissions (e.g. oils c and i)

Metals (S, P, Zn, Ca) emissions correlate with concentration in oil

Phase I - Part 1

Phase 2

Test Laboratory – Phase 2

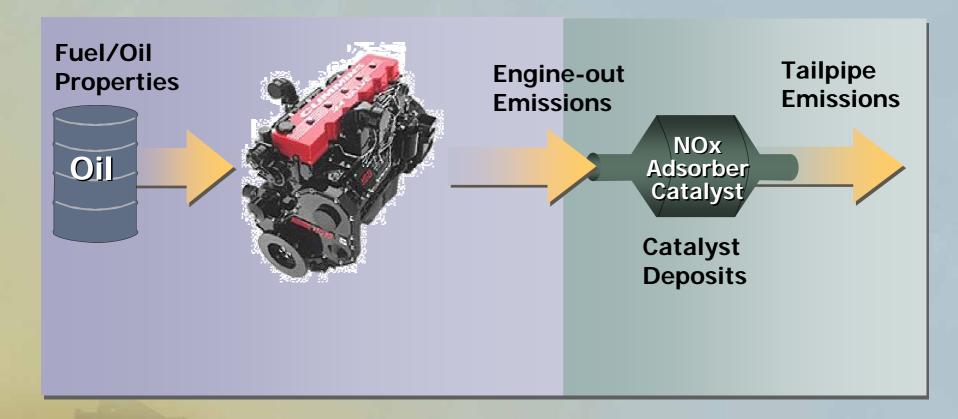
Subcontractor: Analytical Engineering, Inc. (AEI) Columbus, Indiana

Test Hardware - Phase 2

- 2002 Cummins ISB 300 hp @ 2500 rpm
- 5.9L, inline 6 cylinder
- Cooled-EGR
- Single NOx adsorber (7L) In-pipe regeneration fueling

Test Protocol

400-hour test Evaluations at 100-hour intervals - Focus on NO_v reduction efficiency Oil consumption measurement New LNT for each test Oil change at 200-hours DEC base fuel (0.6-ppm S/15-ppm S) Post-analysis of catalyst by XRF

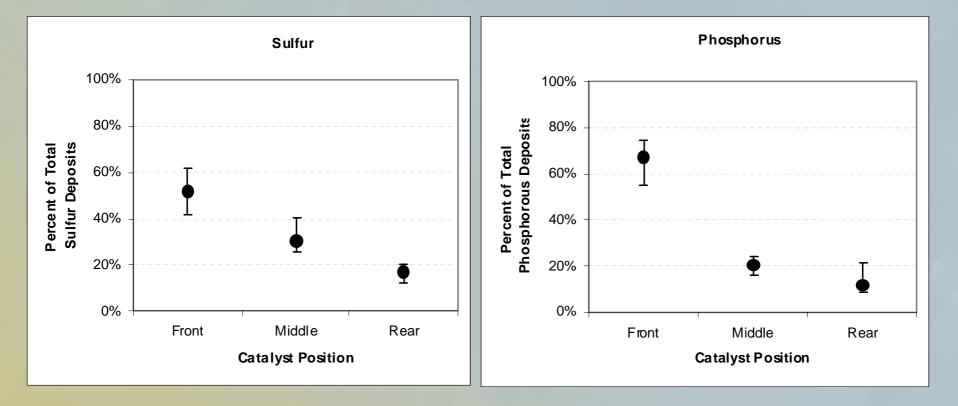


Operating Modes

		Average		
		Catalyst		
	Engine		Mid	Space
	Speed	Load	Temp. ⁰F	Velocity
Mode	(RPM)	(FT*Lbs)	(°C)	(1/hr)
1	1650	140	650 (343)	30,000
2	2100	175	650 (343)	70,000
3	1400	160	750 (399)	32,000
4	1900	225	750 (399)	63,000
5	1200	275	850 (454)	33,000
6	1700	350	850 (454)	62,000

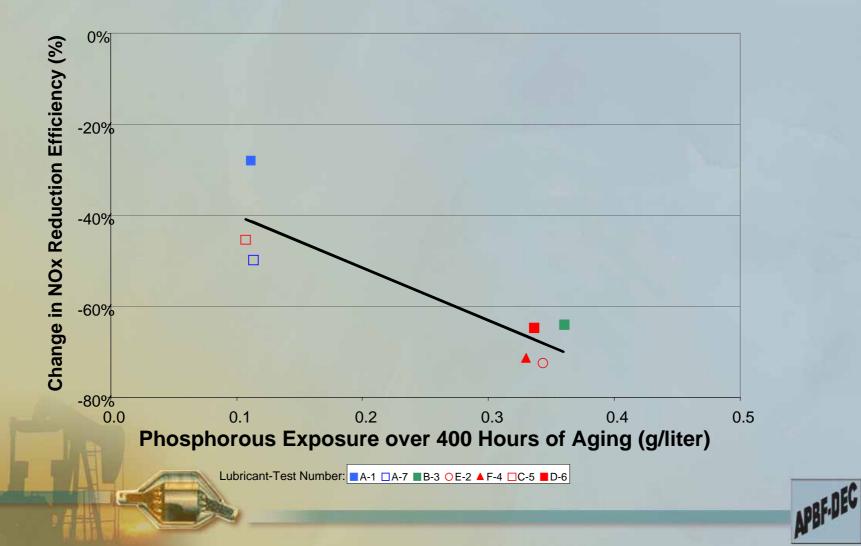
Phase 2 Analysis Approach

Test Matrix

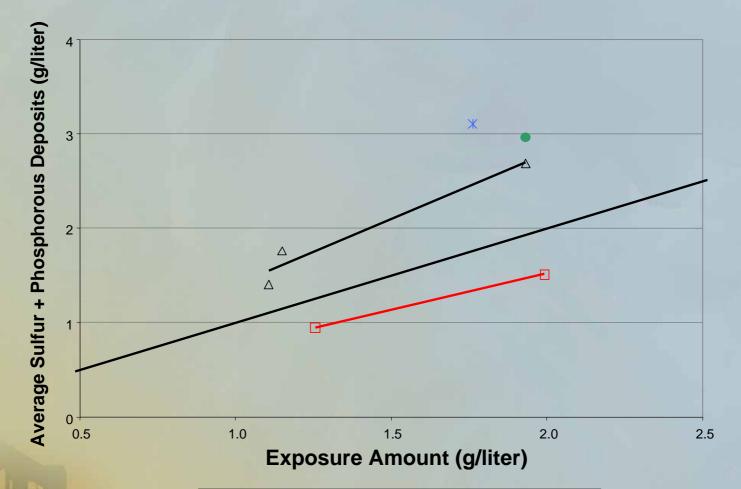

APBF.DEC 27

Properties of Test Oils

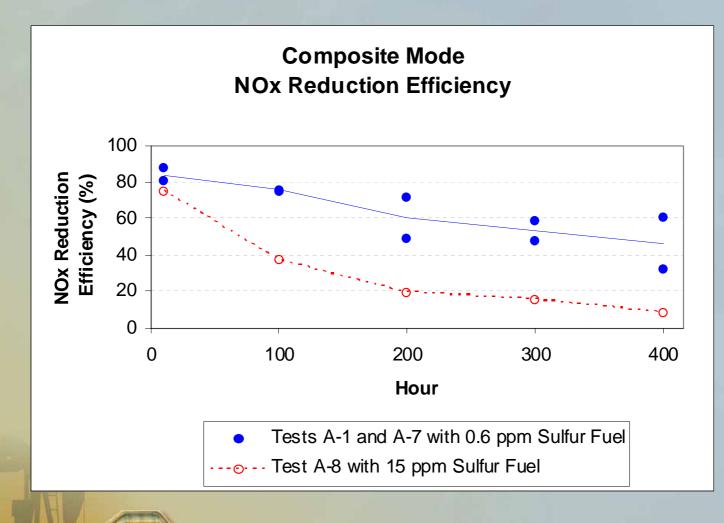
								Viscosity		
							TBN		@40°	
Test	Ash*	S*	Ca	Р	Zn	N*	(mg	@100ºC	С	Soot
Number	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	KOH/g)	(cSt)	(cSt)	(%)
1	0.775	1695	1853	427	471	1128	6.99	14.9	111.3	0.07
2	1.522	2928	3258	1210	1320	1329	12.34	15.0	111.9	0.06
3	1.131	3980	2050	1430	1590	1477	7.3	15.0	111.9	0.06
4	1.316	4195	3160	1340	1520	1314	10.6	15.0	112.5	0.12
5	1.310	2228	3241	419	475	1368	9.6	14.6	107.7	0.12
6	1.497	4197	3518	1280	1480	1315	10.2	14.7	109.1	0.11
7	0.775	1695	2065	451	505	1128	6.7	14.9	110.9	0.08
8	0.775	1695	2329	483	546	1128	8.7	14.9	110.9	0.11



Catalyst Deposit Profile



Phosphorus Impact on Performance


Impact of Detergent

△ Low Ca Sulfonate ☐ High Ca Sulfonate ● High Ca Phenate × High Ca Salicylate

Relative Impact of Fuel and Lube S

APBF.DEC 32

Preliminary Conclusions – Phase 2

- Final reporting still in progress
 - Will be available late 2005
 - Sulfur and phosphorus in lube oil appear to impact LNT performance
 - Deposits of lube oil derived species concentrated on front of catalyst
 - Detergent level may temper the effect Fuel sulfur still appears to be dominant in terms of
 - degradation

THE END

