Activities of Combustion Analysis Working Group in the JCAP

Fumio Okada Petroleum Energy Center

Naoki Yanagisawa ISUZU Advanced Engineering Center Ltd.

Yukio Akasaka JOMO Technical Research Center Co., Ltd.

Representing the Combustion Analysis Working Group Members

Objectives of the Combustion Analysis Working Group

- Scientifically and statistically analyze the data obtained by the Diesel Working Group.
- Technically explain the origin of the differences in emission levels in terms of the engine and fuel technologies applied in the measurements.
- Survey on the mechanisms and performance of after-treatments and the fuel effects on them.

Members in the Combustion Analysis Working Group

Working Groups

Gasoline WG Diesel WG Air Modeling WG Test Methods WG Cost Study WG

<u>Combustion</u> Analysis WG

Health Effect Study WG JCAP Coordination WG Naoki Yanagisawa, Isuzu Advanced **Engineering Center** Masahito Shibata, Toyota Motor Tadakazu Shiozaki, Hino Motors Yukio Akasaka, JOMO Technical **ResearchCenter** Masataka Morinaga, Cosmo Research Institute Naoki Kono, Tonen Kenji Tsuchiya, Japan Automobile Research Institute Masayuki Kagami, Advanced Tech. & Res. Inst., PEC Eiichi Kikuchi, Waseda University Kei Miwa, Tokushima University

Analysis Flow Diagram in the JCAP

Schedule of Combustion Analysis WG

	Diesel WG	Combustion Analysis WG						
FY	Emission Measure- ments	Planning	Survey	Basic Study	Single Cylinder Engine Tests	Combustion Analysis		
1996	STEP-I							
1997		Strategy & Items						
1998	Data 🗕	→	Literature Survey	No. 1 to No. 3	T90 & n-/iso- Paraffin			
1999			Workshop	No. 4 to No. 6	Effects Aroma	Step-1		
2000	STEP-II			No. 7	Effects,	Result		
2001	Data 🗕	→				Step−2 Test Result		

Statistical Analysis of the Diesel Emission Data

Objective: To evaluate effects of fuel properties other than T90 and Aroma., and engine technologies and parameters on emissions.

Example: Regression of Diesel Engine Emission Data

Substances	Parameters	R ² Ave.	R ² Variance
РМ	Dens., CN, Sulfur	0.8054	0.03547
NOx	T90, CN, Single-Aroma	0.8046	0.05170
со	T90, CN, Sulfur	0.8165	0.03903
тнс	T90, CN	0.8535	0.03006

In-cylinder Studies on Diesel Combustion

<u>Combustion Mechanisms in</u> <u>Diesel Engines</u>

Literature Surveys on CombustionSingle-cylinder experiments(JARI)

Diagnoses of Fuel Effects on Combustion (Contractual basis Studies)

Chemical reaction of fuels
NOx and PM formation during ignition and main combustion

Diesel Engine Technologies

Reciprocal Volume Injection Pressure EGR TC, etc.

In-cylinder Combustion T90 Aroma. Content Cetane Number Sulfur, etc

Fuel Technologies

Contractual Basic Studies in Universities

Fuel	RCM	Flow		
Parameters	Fuel Injection Pressure	Injection Nozzle Hole Diameter	EGR	Reactor
Density Viscosity Volatility	199	9		?
CN Aromatics Naphthenes Paraffins	1998	1999		1998
Synthetic Fuel Alkyl-chain Length		2000		

Flow Reactor Studies (1998)

Soot forming tendency Aromatics > Olefins \geq Naphthenes > Paraffins

The RCM Test Results (1998)

The concentration and area of soot formation in the RCM chamber emitted from fuel with a high aromatic content are larger than that from a low aromatic content fuel. However, the difference between fuels tends to decrease with increasing fuel injection pressure.

Fig. 1 Optical set-up for soot imaging and combustion chamber of a rapid compression machine

Effects of Physical Properties of Fuels on Mixture Formation

T90 and density of fuels play important roles for liquid phase penetration lengths, but spray tip penetration lengths are not affected significantly by these parameters.

Total Gas Sampling Studies (1999)

Analysis of hydrocarbon species during the combustion process in a RCM improve the quantification methods used for fuels and their decomposed species.

Heat Release and formation of Small Hydrocarbons

Objectives of Single-cylinder Engine Tests

Engine Side

Operation of a single-cylinder engine by changing engine specifications and conditions independently. Fuel Side

Usage of test fuels whose properties are independently changed.

Obtain fundamental data to understand effects of engine and fuel parameters on diesel tailpipe emissions.

Test Fuels in 1999 Experiments

			Test Fuels Used in 1999 Experiments					
			Base T90 Series		n/i-Paraffin Series			
			T 1	Т9	T 1 0	Т 6	T 7	Т 8
Density	(15)g/cm 3	0.7880	0.7852	0.7916	0.7846	0.7820	0.7880
Viscosity	(30)mm ² s	3.630	3.322	4.946	3.560	3.470	3.630
Distillation								
10%			229.5	230.5	233.0	232.0	234.5	229.5
50%			249.0	247.5	254.5	253.5	256.5	249.0
90%			307.0	275.0	387.5	311.0	313.0	307.0
Cetane Number		48.8	48.6	48.5	60.4	70.7	61.0	
Composition n-Paraffins	Vol	%	36	35	24	50	63	36
i-Paraffins			57	58	70	44	32	57
Naphthenes			7	7	6	6	5	7
Total Aroma.			0	0	0	0	0	0
Sulfur Conc.	mas	s%	0	0	0	0	0	0
Cetane Improver	mq/	Ľ	none	none	none	none	none	T1+5000

Engine Conditions in 1999 Experiments

Basic Engine Conditions

Engine Revolution · 1800 rpm

Injection T in ing $\cdot 1 - 4$ point

NA Conditions

TC Conditions

	Intake [kg/cm²]	Injection [MPa]	Hole Dia	. EGR [%]	Regulation
1 /	NΔ	60	0.25	-	1994
1.4			0.16		
		100	0.18	-	2000
			0.20		
4 0		30	0.25	0	1994
т.0	NA	40			
	50	0.18	0		
		60			2000
		50	0.18	20	
		00		40	

	Intake [kg/cm²]	Injection [MPa]	Hole Dia [mm]	. EGR [%]	Regulation
1 8	0.4	60	0.25	-	1994
1.0	0.4		0.16		
		100	0.18	-	2000
			0.20		
1 0	0 1	30	0.25	0	1994
4.0	0.1	40			
		50	0.18	0	
		60			2000
		50	0.18	20	
				40	

Changes [%] in PM and NOx with Increasing T90 by 100 °C at High Load

Changes [%] in PM and NOx with Increasing n-Paraffin Content by 10 % at High Load

Survey on After-treatment Systems (1)

- Literature survey on after-treatment systems (1998). •
- Workshop on after-treatment technologies and influence of fuel properties on them (8th of November, 1999).

Guest Speakers:

- Johnson Matthey
 Engelhard
- AVL

- FEV

Survey on After-treatment Systems (2)

3. Survey on C (soot) + NO₂ reaction

Following a recent request from Diesel WG, Combustion Analysis WG has just started a survey on the reaction.

- Mechanisms, rate constant and temperature dependence of the reaction
- Influence of SO₂ and H₂O on the reaction

Results of the survey may lead us to the next contractual basis studies in a university.

Summary (1)

In-cylinder Studies

- Contractual basis studies and single-cylinder engine tests have been carried out in pursuit of fundamental understanding of the in-cylinder combustion mechanisms and influences of engine parameters and fuel properties on emissions.
- All of the information obtained through those studies and results of the statistical analysis will be compiled for the analysis and interpretation of the Diesel WG's data.
- The technical report will be published in March, 2000
 (firstly in Japanese).
 Petroleum Energy Center

Summary (2)

Surveys on After-treatment Systems

- Surveys and studies on technologies and reactions in after-treatment systems have become major tasks in the Combustion Analysis WG.
- The WG is contributing in this field by gathering information, holding workshops, discussion with academic authorities and probable contractal basis studies.

