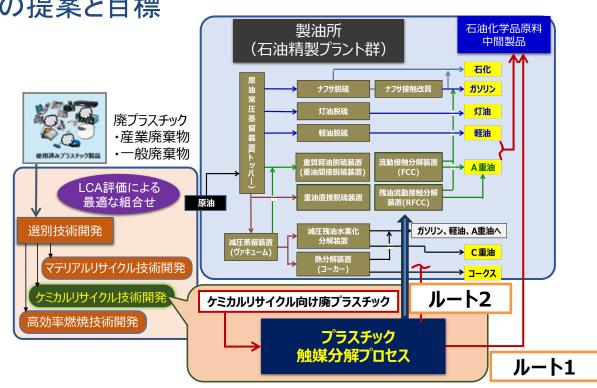
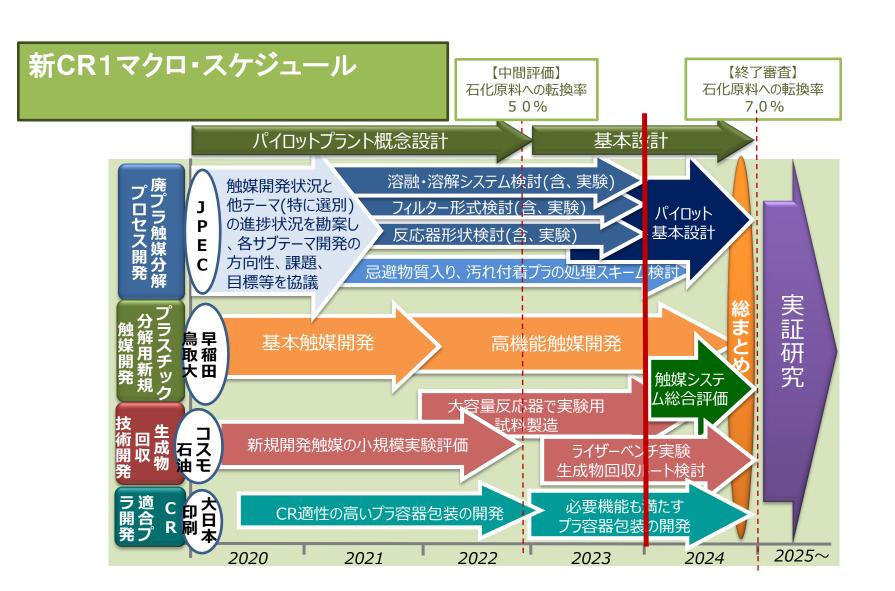
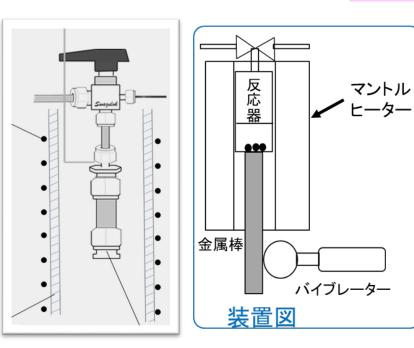
2024年度 JPECフォーラム


触媒分解によるケミカルリサイクルの意義と最近の展開

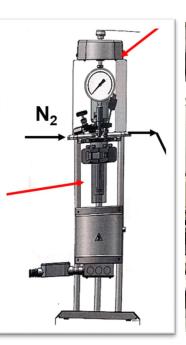

2024年5月14日

早稲田大学先進理工学研究科 松方正彦

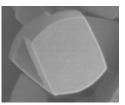
現PJ(2020-2024)の提案と目標

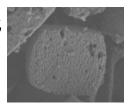

- ・日本各地に存在する石油精製設備を最大活用し、石油系溶媒を使用して、主に3Pを対象とする液相触媒分解プロセスの開発。
- ・生成物の一部(C2-C9炭化水 素)は石油化学に直送(ルート 1)。
- ・C10以上の低分解炭化水素は 石油精製のFCC、RFCCを活用 して分解、石油化学原料化。 (ルート2)
- ・合計の石化原料収率70%以上。

各種触媒分解反応器について


鳥取大 Rx:3.6ml

早大 Rx:4ml


<mark>早大 Rx:100ml</mark>

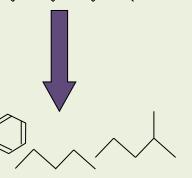


プラスチック分解触媒のイメージ

ゼオライトの階層構造化 (ミクロ、メソ孔性の両方を付与) Hierarchical zeolite



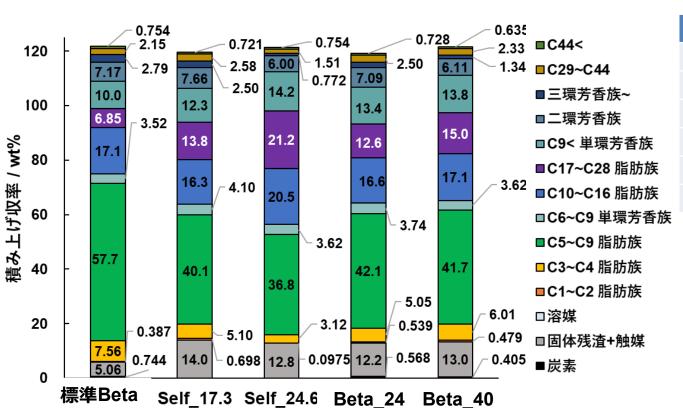
第1ステップ 廃プラの分解(低分子化)


・ ゼオライトの外表面酸点による分解

-(CH₂-CH₂)-_n

第2ステップ 基礎化学品(原料・中間製品等)の生成

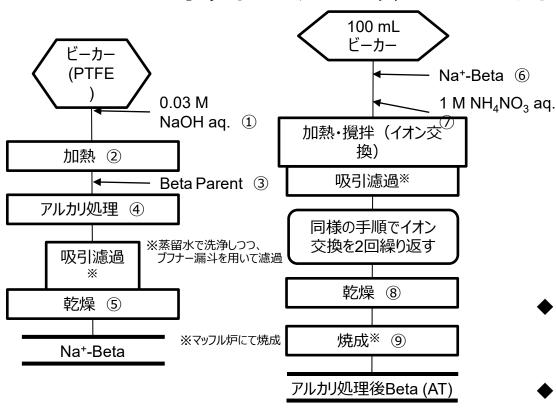
・ ゼオライトのミクロ細孔内酸点での反応



様々なBeta触媒を用いた反応結果の比較

◇PP分解試験の結果

反応温度: 400 ℃, 反応時間: 60分, 触媒: <u>1.0</u> g


触媒	PP転化率 /%
w/o	39.1
標準Beta	98.9
Self-17.3	59.1
Self-24.6	65.9
Beta_24	66.0
Beta_40	63.0

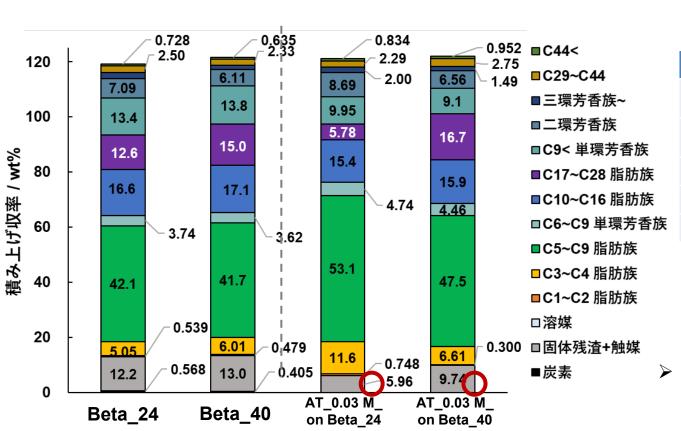
▶ 標準Betaは100%近いPP 転化率と高いC3~C9収率

アルカリ処理

✓ Betaゼオライトにアルカリ処理 → メソ孔形成、外表面積増大の効果

表	アノ	レカリ	 処理条	件
---	----	-----	-------------	---

番号	量	温度 / °C	時間
1	400 mL	-	-
2	-	60	-
3	4.00 g	-	-
4	-	60	10 min
(5)	-	70	一晚
6	全量	-	-
7	60 mL	80	1.0 h
8	-	70	一晚
9	全量	550	10 h


- ◆ AT_x M_on y と記載
 - •x: アルカリ処理時のNaOH aqの濃度
 - *y: アルカリ処理を施す対象のBeta
- ◆ 例: AT_0.03 M_on Beta_24

アルカリ処理前後のBetaを用いた実験

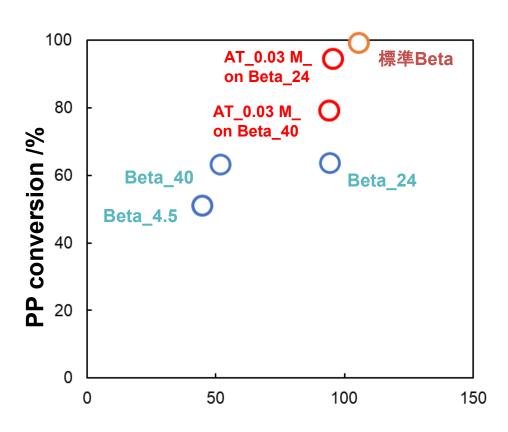
◇PP分解試験の結果

反応温度: 400 ℃, 反応時間: 60分, 触媒: <u>1.0</u> g

触 媒	PP転化率 /%
AT_0.03 M_on Beta_24	94.2
AT_0.03 M_on Beta_40	79.0
Beta_24	66.0
Beta_40	63.0
cf. 標準Beta	98.9

アルカリ処理後はPP転化率 C3~C9収率ともに高くなった

アルカリ処理前


アルカリ処理後

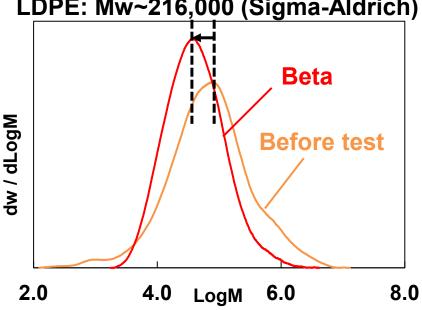
アルカリ処理前後のBetaを用いた結果の比較

◇PP分解試験の結果

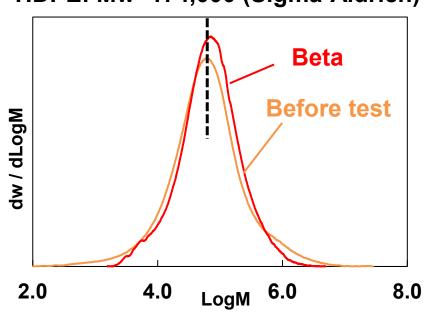
反応温度: 400 ℃, 反応時間: 60分, 触媒: <u>1.0</u> g

Specific external surface area / m² g⁻¹

触 媒	PP転化率 /%
AT_0.03 M_on Beta_24	94.2
AT_0.03 M_on Beta_40	79.0
Beta_24	66.0
Beta_40	63.0
cf. 標準Beta	98.9


- ▶ 横軸に触媒の外表面積、縦軸にPP転化率
- ✓ 外表面積とPP転化率の間には正の相関がある可能性
- ✓ しかし、Beta_24の場合はアルカリ処理前後で 外表面積にほぼ違いが見られないにもかかわ らず

PP転化率は30ポイントほど向上

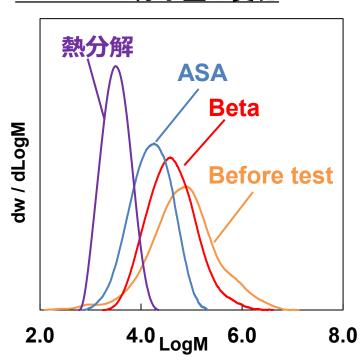


固体残渣分子量

HDPE: Mw~174,000 (Sigma-Aldrich)

✓ゼオライトを用いた際には、HDPEではピークトップがあまり変化しない

✓熱分解、ASAを用いた際についても検討


固体残渣分子量

Column: TSKgel G3000H ×L, Temperature: 130 °C

Flow rate: 1.0 mL min⁻¹, Detector: RI, Solvent: o -Dichlorobenzene

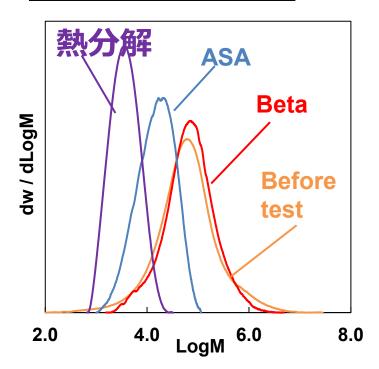
Measurement range: Mw 589~5,480,000(PS)

○ LDPEの分子量の変化

溶媒: n-C16, 触媒: ASA 1 g or Beta 0.25 g

condition	catalyst	Mw /-	Mp / -	Mw/Mn	PE conv. / %
Before test	-	215,638	66,002	12.985	-
360 ℃, 0 min,	Beta	79,921	30,949	3.348	47.7
380 ℃, 60 min	ASA	23,544	14,390	1.995	66.9
400 ℃, 90 min	-	2,962	3,895	1.481	37.2

- ASA, 熱分解ともに分子量が低分子量側に移動
- 分子量が大きく減少
- →ランダム分解が起きていると考えられる

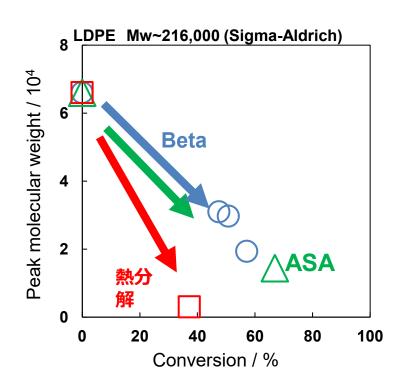

固体残渣分子量

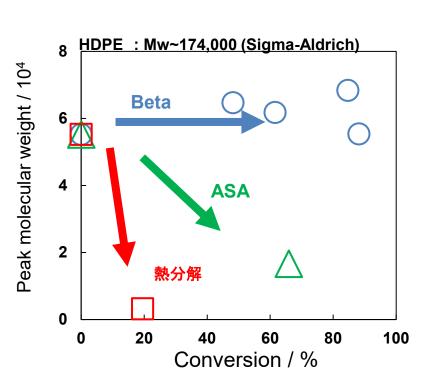
Column: TSKgel G3000H ×L, Temperature: 130 °C

Flow rate: 1.0 mL min-1, Detector: RI, Solvent: o -Dichlorobenzene

Measurement range: Mw 589~5,480,000(PS)

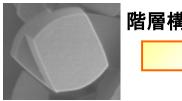
<u>○ HDPEの分子量の変化</u>

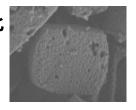

溶媒: n-C16, 触媒: ASA 1 g or Beta 0.25 g


condition	catalyst	Mw /-	Mp / -	Mw/Mn	PE conv. / %
Before test	-	174,296	55,191	9.996	-
360 ℃, 0 min,	Beta	123,775	68,343	3.495	84.4
380 ℃, 60 min	ASA	20,401	16,644	1.995	65.9
400 ℃, 90 min	-	4,499	3,175	1.524	19.5

- アモルファスシリカアルミナを用いたHDPE分解、および 熱分解では分子量が大きく減少
- →ランダムに分解が起きていると考えられる

HDPE, LDPEの違い

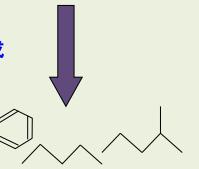



HDPEはゼオライト細孔内に侵入し、細孔内で分子鎖が気体、 液体生成物まで分解されるため、ピークトップ分子量は変化が 少ないと考えられる

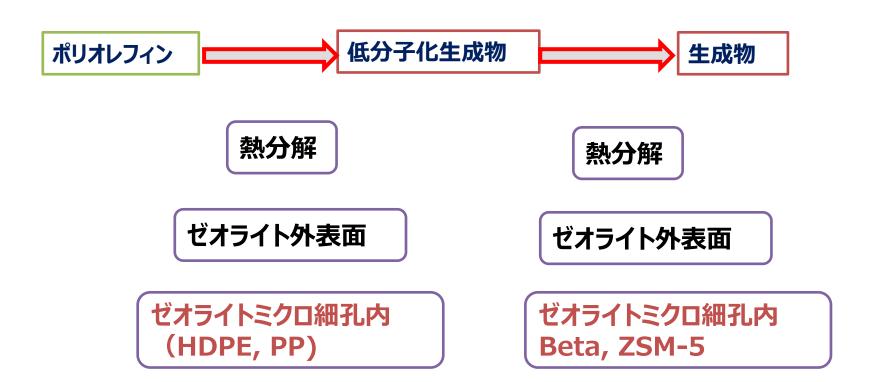
プラスチック分解触媒のイメージ

ゼオライトの階層構造化 (ミクロ、メソ孔性の両方を付与) Hierarchical zeolite

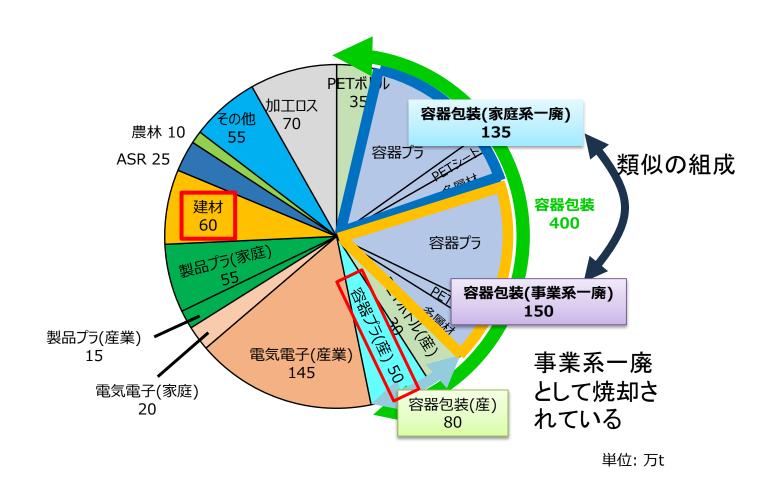
第1ステップ 廃プラの分解(低分子化)


・ ゼオライトの外表面酸点による分解

-(CH₂-CH₂)-_n


第2ステップ 基礎化学品(原料・中間製品等)の生成

・ ゼオライトのミクロ細孔内酸点での反応



プラの分解機構

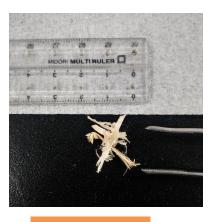
廃プラスチックの内訳(2019年)

実廃プラ分解に関する検討

重量:約5.0 g

そのままだと体積200 mLほど

100 mL回分反応器との比較


- ◆ 従来の純品のプラスチック分解試験では粉末~ビーズ状のものを5.0 g使用
- ◆ 同重量の実廃プラを集めたところ体積が200 mLほどに (手で押せば100 mL程度には小さくなる)
- ◆ 実廃プラの成分は以下の通り(重量ベース) PE: 63.2% PP: 21.1% PS: 15.8%

実廃プラ: 溶融試験

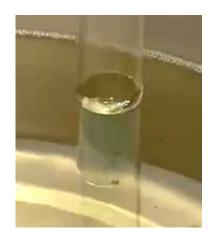
1. 発泡スチロール?

2. ブルーシート?

3. ゴミ袋?

4. ???

- ✓ 実廃プラを従来と同様の方法で触媒分解できるか検討 する実験に先立ち、溶融の可否について試験
- ① 1~4の種類の実廃プラを目視にて選別・回収し、ひと破片を溶媒と共に試験管に入れる
- ② 180 ℃のオイルバスに入れ、実廃プラの溶融挙動を観察

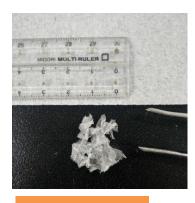

実廃プラ: 溶融試験

1. 発泡スチロール?

2. ブルーシート?

- ✓ 非常に見えづらいが、サンプル1は溶媒上に 浮いていたもののオイルバスに入れると10秒 ほどで溶融が開始
- ✓ 青色の**色素成分が沈んでいく**様子が観察された

10 min


60 min

150 min

- ✓ 完全に溶融するには 2時間30分ほど要し た
- ✓ 溶媒中で沈んだ
- ✓ もやがかかったような見た目になった後最終的に溶融

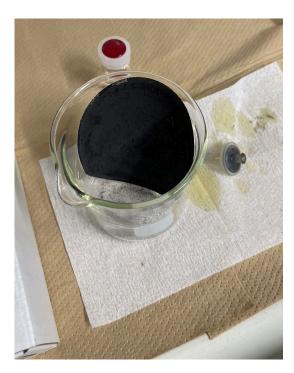
実廃プラ: 溶融試験 180℃

3. ゴミ袋?

4. ? ? ?

✓ オイルバスに入れて10~30秒ほどで溶融し 目視で識別できない状態に

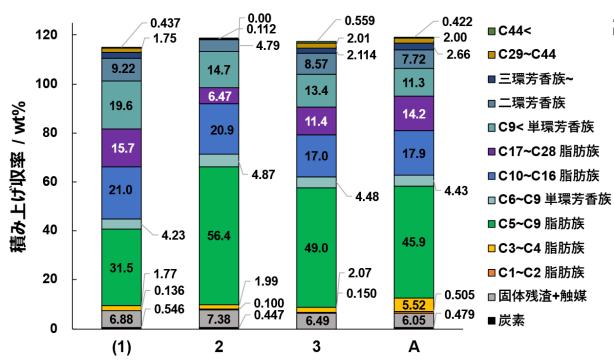
- ※藁のような見た目・触感を有するサン プル
- ✓ 性質上写真撮影が難しかった
- ✓ 比較的溶融に時間を有した
- ✓ オイルバスに入れて1時間経過すると 完全に溶融


溶融試 験後

どのサンプルでも溶融後冷却すると 小さい**粒子が溶媒中に分散**

沈殿物などは見られなかった

液体生成物 活性試験後に回収した固体 (固体残渣の除去後)(黒色は炭素析出した触媒と考えられる)


Sample... 実廃プラ: 5.0 g, Solvent: 20 g, Catalyst: 標準Beta 1.0 g

反応温度: 400°C, 反応時間: 60分

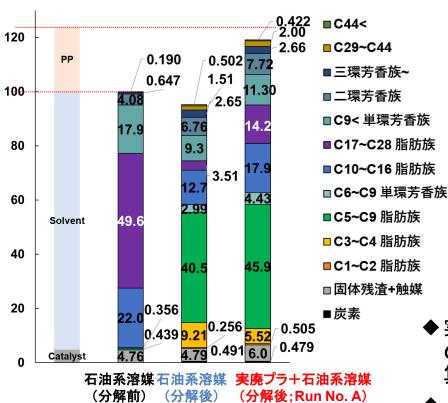
- ◆ ベンチマーク触媒 (931HOA) にて実廃プラの 分解試験を実施 (触媒:1.0g、炭化水素溶媒 20g、 反応温度:400°C、反応時間:60 min
- ◆この条件で実廃プラはほぼ分解
- ◆ 液体生成物の色はオレンジ色で純品プラの分解時と同様
- ◆ 400°Cまでの昇温に要する時間も純品 プラの場合とほぼ変わらなかった

① 実廃プラ分解試験の生成物分布

※(1)...蒸留GCの測定に不備、C5~C9収率が極端に低い

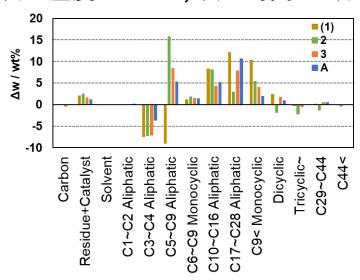
Sample... 実廃プラ: 5.0 g, Solvent: 20 g,

Catalyst: 標準Beta 1.0 g


芯温度: 400 ℃, 反応時間: 60分

Run No.	プラ 転化率 /%	C3~C9収率 /wt%
(1)	90.9	37.5
2	89.2	63.3
3	92.9	55.6
4	93.7	55.8

- ◆生成物分布: やや違いが見られたが大きな違いは見られなかった
- ◆ PP転化率:どの実験でも90%程度で変わらなかった

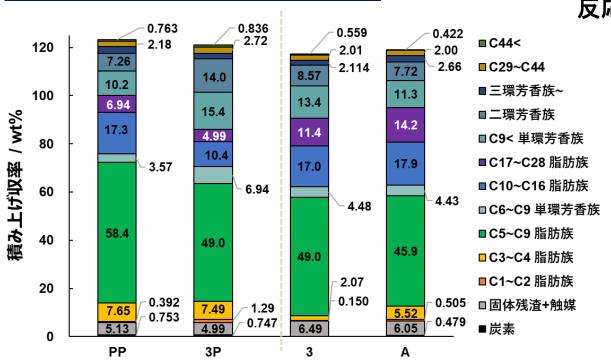


② 溶媒のみの実験結果の差し引き

Sample... 実廃プラ: 5.0 g, Solvent: 20 g, Catalyst: 標準Beta 1.0 g

反応温度: 400°C, 反応時間: 60分

※(1)...蒸留GCの測定に不備があり、C5~C9収率が極端に低くなっています


- ◆ 実廃プラ+溶媒の分解試験から溶媒のみの分解試験 の結果を差し引くことで、実廃プラ由来の生成物量を 算出
- ◆ ややバラつきは見られるが、C5~C9生成、ただしC28 の幅広い範囲の脂肪族が実廃プラ由来で生成

Sample... 実廃プラ: 5.0 g, Solvent: 20 g, Catalyst: 煙港Pote 1.0 g

Catalyst: 標準Beta 1.0 g

③ 純品プラの分解試験との比較

反応温度: 400°C, 反応時間: 60

条件	プラ転化率 /%	C3~C9収率 /wt%
PP	98.9	69.6
3P	99.1	63.5
3	92.9	55.6
Α	93.7	55.8

- ◆ 生成物分布: 大きな違いは見られなかった
- ◆ C3~C9収率:純品の場合に比べて 実廃プラでは約10ポイント低下
- ◆ PP転化率:純品の場合に比べて 実廃プラでは6~7ポイント程度低下

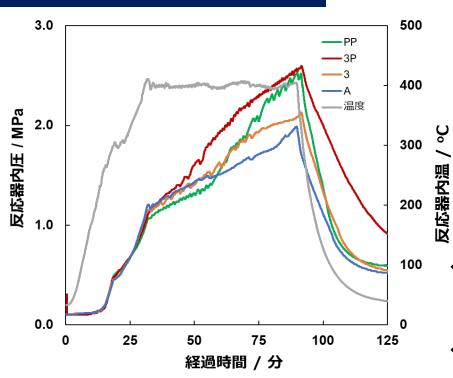
(PSの影響はあるか)

PP...JPEC提供, Mw≈370,000

3P...JPEC提供, **PP:HDPE:LDPE:GPPS=3:1.5:1.5:1**

実廃プラ使用

実廃プラについて


- ◆ 実廃プラの重量比率: PE: 63.2% PP: 21.1% PS: 15.8%
- ◆ ふわふわしており嵩張るが、180 °Cで溶融、また反応器にも5.0 g分は入れられる

実廃プラ分解試験

- ◆ 実廃プラは400 °C, 60 minで90%以上分解し液体生成物に
- ◆プラ転化率、C3~C9収率は純品プラの場合に比べて若干低下
- ◆ 全体を通して、従来通りの方法で実廃プラを分解は可能

③ 純品プラの分解試験との比較

PP...JPEC提供, Mw≈370,000

3P...JPEC提供, PP: HDPE: LDPE: GPPS = 3:1.5:1.5:1

Sample... 実廃プラ: 5.0 g, Solvent: 20 g,

Catalyst: 標準Beta 1.0 g

反応温度: 400 °C, 反応時間: 60分

条件	プラ 転化率 /%	C3~C9収率 /wt%
PP	98.9	69.6
3P	99.1	63.5
3	92.9	55.6
Α	93.7	55.8

- ◆ 反応器内圧については、純品プラに比べて実 廃プラのほうが0.3~0.5 MPaほど小さい ←C3~C9生成物収率が低くなったため?
- ◆ 反応圧の変化から判断するに、60分の反応まで触媒は完全に劣化はしていないと推測、熱分解の寄与の考慮必要

結果のまとめ

- ▶アルカリ処理による触媒性能の顕著な向上を確認
- ▶Betaは石油原料化に適した触媒で、後処理によって活性向上顕著
- ▶ゼオライトによって3Pが直接分解し、とくにHDPEはミクロ細孔の分解への寄与が顕著(PPも)
- ▶実廃プラ(建材*事業系容器)の分解ができることを確認 (ただし、課題有)

ご清聴ありがとうございました

謝辞:この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO) の委託業務(JPNP20012)の結果得られたものです。