The Usage of Biofuels in Korea and Future Issues

2007. 2. 23

In-Ho Cho, Ph.D

Fuels Lab, Energy R&D Center

140-1, Wonchon, Yuseong, Daejeon 305-712, KOREA tinos@skcorp.com

Contents

- 2. Quality Issues
- 3. Environmental Issues
- 4. Feedstock, Policy and Economics
- 5. Conclusions

Key Drivers and Government Policy

- Korean government aggressively drives utilizing biofuels.
- Targeted share of renewable energy is 2% in 2006 and 5% by 2011.
- Only biofuels appear to be feasible option.

Securing the Energy Future

- Upcoming 'Oil Peak'
- Increasing dependence on the Middle East crude
- Korea is 7th biggest oil consuming nation.

- Global warming and catastrophic climate change
- Kyoto Protocol came into effect.
- Korea expected to be obliged to reduce GHG from 2013.

[L] C.J. Campbell, Presentation at the Technical University of Clausthal, Dec. 2000 [R] EUA Price: www.pointcarbon.com

Major Events and BD consumption Increase

- Demonstration supply has been carried out since May 2002.
- On the basis of revised Petroleum Business Law, BD5 and BD20 have been supplied since July 2006.

Agreement on BD Supply

- Refiners and Government agreed on voluntary biodiesel supply.
- Government is considering mandatory blending of BD from July 2008.

"From July 2006, Korean Refineries shall utilize biodiesel 90,000 kL annually (1,540 bpd) for 2 years." 1,540 bpd corresponds to 0.5% of total petrodiesel sales.

"Government shall make an effort to stimulate biodiesel spread by policy support" Tax, which accounts for 40% of diesel retail price, is to be exempted.

BD5 and BD20 Supply Chain

- BD5 is subject to diesel fuel spec, and supplied only by refiners.
- Bus and truck company can use BD20¹⁾ on their own accord.

¹⁾ 10% during winter season($11/1 \sim 3/31$)

Suppliers and Production Capacity of Biodiesel

- As of Jan. 2007, nine suppliers are registered as certified suppliers, and they are aggressively expanding their capacity.
- A few large corporations seems to be allowed to join, thanks to the government's policy of increasing BD supply.

Suppliers	Capacity, kℓ/yr	Source
Kaya Energy	100,000	Soybean, Kitchen (Rapeseed)
B&D Energy	50,000	Soybean, Kitchen (Rapeseed)
Ecoenertech	33,000	Kitchen
BASKO	27,300	Soybean, Kitchen (Rapeseed)
BDK	20,000	Soybean, Kitchen
Others	84,000	Soybean, Kitchen, Palm
Total	314,300 kℓ/yr (5,380 bpd)	

Petroleum and Alternative Fuels Business Law

Automotive Diesel

Property	Spec
Cetane Number	45 Min
Sulfur, wt.ppm	30 Max
Density(15°C), kg/m ³	815~845
D90	360 Max
Vis@40°C, mm²/s	1.9~5.5
Flash Point, °C	40 Min
CFPP, °C	-16 Max
Polyaromatics, vol%	11 Max
HFRR, microns	460 Max
FAME ¹⁾ , vol.%	5 Max

¹⁾ FAME: Fatty Acid Methyl Ester

Automotive Gasoline

Property	Spec	
RON	91~94	
Sulfur, wt.ppm	50 Max	
D10	70 Max	
D50	125 Max	
D90	175 Max	
EP	225 Max	
Benzene, vol.%	1.0 Max	
Aromatics, vol.%	30(27) Max	
Olefin, vol.%	18(21) Max	
Oxygen ²⁾ , wt.%	0.5~2.3 (Winter: 1.0~2.3)	

²⁾ denotes the amount of oxygen contained in MTBE, ETBE or bioethanol.

Status of BD Spec. and Quality

- Based on EU's, Korean BD spec(mandatory) has a few differences.
- Saybolt color spec is indicator by which SK judge whether BD satisfy EN14214 or not. It can be achieved by distillatory purification.

Properties	Europe	Korea	SK	SME-1	SME-2	SME-R
Linolenic Acid ME, wt.%	<12	-	-	6.2	7.8	7.7
lodine Value, g iodine/100g	<120	-	-	>120	>120	>120
Monoglyceride, wt.%	<0.80	-	<0.8	0.263	0.608	0.154
Diglyceride, wt.%	<0.20	-	-	0.245	0.245	0.011
Triglyceride, wt.%	<0.20	-	_	0.195	0.117	ND
Free Glycerine, wt.%	<0.02	-	-	ND	0.112	0.016
Carbon Residue, wt.%	-	<0.1	-	0.01	0.07	0.0005
Carbon Residue(10%), wt.%	<0.30	-	<0.30	0.93	2.98	0.28
Water & Sediment, vol%	-	<0.05	<0.05	<0.05	<0.05	<0.05
Water Content, wt.ppm Total Contamination, wt.ppm	<500 <24	-	-	293	238	124
Saybolt Color	-	-	>+10	-2.9	-50.3	+16.1
CFPP, °C		<0		RME -12	2, SME -2,	PME +13

^{*} SME-R was purified by distillation.

Contents

- 1. Current Status in Korea
- 2. Quality Issues
- Cold Flow Properties
 - ✓ Oxidation Stability
 - 3. Environmental Issues
 - 4. Feedstock, Policy and Economics
 - 5. Conclusions

Managing Cold Flow Properties: CFPP & WDI

- CFPP is the only indicator of vehicle cold operability, even though it didn't exactly reflect recent changes in vehicle.
- Not being a regulated properties, WDI(Wax Dispersancy Index) is also an important measures which represent cold storage stability.

CFPP Apparatus

WDI Apparatus

[L] Private Communication, Infineum [R] SK-owned apparatus

Wax Dispersancy Index

• SK is monitoring delta-CP and bottom-CFPP of diesel products.

delta-CP =	CP(bottom 20%) – CP(original)
bottom-CFPP =	CFPP(bottom 20%)

Bottom 20% Layer

Feedstock Composition

- Saturated components can easily be crystallized and reduce cold flow.
- PME has higher portion of saturated than RME and SME.

Component Distribution

Infineum, Worldwide Fuel Quality Trends, Jan. 2005

CFI(Cold Flow Improver)

• Cold flow problems can be mitigated by additive solutions.

SK, In-house Test Results

CFPP and WDI

- Even at higher treat rate of CFI, using PME is tough challenge.
- Apart from CFPP, small amount of BD improve WDI performance.

SK, In-house Test Results

Mechanism

Contents

- 1. Current Status in Korea
- 2. Quality Issues
- ✓ Cold Flow Properties
- ✓ Oxidation Stability
 - 3. Environmental Issues
 - 4. Feedstock, Policy and Economics
 - 5. Conclusions

Chemical Structure of Biodiesel

• BD has methylene-interrupted double-bond configuration, which include unstable bis-allylic position carbon atom.

Unstable bis-allylic position О И С — ОН Оссиггеd **Methylen-interrupted**

о //_ он Stable

Conjugated

SwRI, Characterization of Biodiesel Oxidation and Oxidation Products, Aug. 2005

Composition and Oxidation Tendency

- Oxidation rate is proportional to the number of double-bond.
- C18:2 and C18:3 molecules account for 60% of SME.

SwRI, Characterization of Biodiesel Oxidation and Oxidation Products, Aug. 2005

Distillation and Naturally Occurred Antioxidants

Naturally occurred antioxidants are removed during distillation.

[L] SK In-house Test Results

[R] BIOSTAB Project, Stability of Biodiesel, July 3, 2003

Artificial Antioxidants

- Optimum antioxidants can be different case by case.
- TBHQ showed best performance in SME-D

BIOSTAB Project, Stability of Biodiesel, July 3, 2003

Test Results

- Like the results of BIOSTAB project, TBHQ showed best performance.
- Distillation temperature is another important factor of stability.

SK, In-house Test Results

Contents

- 1. Current Status in Korea
- 2. Quality Issues
- **3. Environmental Issues**
 - 4. Feedstock, Policy and Economics
 - 5. Conclusions

Emissions Benefit

• BD contribute to reduction of HC and PM emissions.

[L] JOMO, Exhaust Emissions of a DI Diesel Engine Fueled with Blends of Biodieseland Low Sulfur Diesel Fuel SAE Paper 972998

Effects on DPF: Soot Characterization

• Higher oxygen content of BD soot lower combustion temperature.

NREL, DPF Performance with Biodiesel Blends, Aug 20, 2006

HP-2007-01, 20070223, KHS

Effects on DPF: Regeneration Rate

Regeneration rate increases with increasing BD content.

NREL, DPF Performance with Biodiesel Blends, Aug 20, 2006

Effects on DPF: Performances

• Apart from DPF, BD provides additional PM reduction benefit.

NREL, DPF Performance with Biodiesel Blends, Aug 20, 2006

Low Volatility – Engine Oil Dilution

• Deterioration of oil

BOSCH, Biodiesel in Korea: Requirements Placed by the Fuel Injection System on the Quality of Biodiesel Blends, Jun 30, 2006

Contents

- 1. Current Status in Korea
- 2. Quality Issues
- 3. Environmental Issues
- **4.** Feedstock, Policy and Economics
 - 5. Conclusions

Economic Feasibility: Break-even Crude Price

- As of Feb. 1st, break-even crude price was calculated to be \$88/bbl.
- As biodiesel production cost is tightly tied to the crude price, real break-even point is expected to be far higher.

	Current	Break-even	
Crude Price (Dubai FOB)	\$52/bbl	\$88/bbl <	
Diesel Refinery-gate Price Tax	\$1.21/lit <i>0.57</i> 0.64	\$1.60/lit < 0.97 0.64	qual
SME Soybean Oil & Others Tax(Assumption)	\$1.60/lit 0.96 0.64	\$1.60/lit ← 0.96 0.64	

Economic Feasibility: Social Benefit Approach

Unit production cost of \$0.59/lit, which balances benefit and cost, should be achieved to justify government subsidy.

To Substitute 1% Diesel

Production Cost, 2002

1) Assumption: 25 Euros / ton CO_2

[L] SERI, Reasonable Implementation Strategy for Biofuels, Nov 8, 2006 [R] IEQ, Biofuels for Transport, 2002

RME, EU

Possible?

Possibility of Self-supply: Arable Land

• Arable land requirement for the supply of BD2

• When all the fallow lands are utilized:

	Rapeseed	Soybean
Biodiesel Production ¹⁾ , bpd	duction ¹⁾ , bpd 271 46 ⁻	
Motor Diesel Sales, bpd	352,000	
% of Biodiesel	0.08	0.13

¹⁾ University of Strathclyde(www.esru.strath.ac.uk), Biofuels for Transport, IEA, 2004

Possibility of Self-supply: Taxation and Financial Support

- Most probable scenario is to cultivate rapeseed in the rice field during winter season, instead of barley.
- To substitute 1% diesel with self-supplied RME, \$300 mil. of tax exemption and financial support for rapeseed farmer is required.

To Substitute 1% Diesel

Support to compensate a farmer for barley/rapeseed income difference.

weekly.chosun.com, July 24, 2006

Contents

- 1. Current Status in Korea
- 2. Quality Issues
- 3. Environmental Issues
- 4. Feedstock, Policy and Economics

Conclusions

- Under the Korean government's strong policy drive, nationwide distribution of BD was started from July 2006.
- Based on EU's, Korean BD spec has a few differences with it. To be on the safe side, SK is managing BD quality by our own specifications.
- Despite the technical achievements so far, special attention has to be paid to cold flow property and oxidation stability.
- BD policy should be established on the long-term insights about engine technology, because characteristics of BD can affect the performance of newly developed engine and after-treatment devices.
- Considering gross social benefit, BD seems not to be rationalized under Korean circumstances. Self-supply shall require enormous taxation and financial support.