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The Oil Companies’ European association for health, safety 
and environment in refining and distribution

Non-profit, European association founded in 1963, capable of 
carrying out quality research on environmental, health and safety 
issues related to the downstream oil industry 
Currently 31 member companies representing about 97% of  
refining capacity in EU-25
Main areas of activity

Automotive Emissions and Fuels Quality
Air Quality
Water/Soil Quality and Waste
Oil Pipelines
Safety
Refinery technology and infrastructure
Health Science
Petroleum Products
Risk Assessment
Implementation of REACH & GHS

Secretariat based in Brussels
More details at www.concawe.org

http://www.concawe.org/
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The JEC WTW Study: Background and Objectives

Joint study between CONCAWE and

Version 1 in December 2003, version 2 in Mai 2006

Objectives
Well-to-wheels energy use and GHG emissions assessment 

Wide range of automotive fuels and powertrains
Relevant to Europe in 2010 and beyond.

Consider the viability of each fuel pathway
Estimate the associated macro-economic costs.
Have the outcome accepted as a reference by all relevant 
stakeholders.

Focus on 2010-2015

The report is available on-line at: http://ies.jrc.cec.eu/WTW

http://ies.jrc.cec.eu/WTW
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The JEC WTW Study: Methodology

Two main principles

Marginal impact
Starting from the “Business-as-usual” scenario, consider 
“marginal” impact of introduction of alternative fuels

Allocation of energy consumption and GHG emissions 
based on realistic substitution scenarios

All consumptions allocated to alternative fuel being produced
Estimation of a debit or credit for each co-product according to 
their assumed fate
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Well-to-Wheels Pathways

Fuels

Conventional 
Gasoline/Diesel/
Naphtha

Synthetic Diesel

CNG (inc. biogas)

LPG

MTBE/ETBE

Hydrogen
(compressed / liquid)

Methanol

DME

Ethanol

Bio-diesel (inc. FAEE)

Powertrains

Spark Ignition:
Gasoline, LPG, CNG, 
Ethanol, H2

Compression Ignition: 
Diesel, DME, Bio-diesel

Fuel Cell

Hybrids: SI, CI, FC

Hybrid Fuel Cell + 
Reformer

Resource

Crude oil

Coal

Natural 
Gas

Biomass

Wind

Nuclear

Inc. preliminary 
views on

Carbon Capture
and Sequestration
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Vehicle Assumptions

Simulation of GHG emissions and energy use calculated for 
a model vehicle using the ADVISOR freeware

Representing the European C-segment (4-seater Sedan)
Not fully representative of EU average fleet
New European Driving Cycle (NEDC)

For each fuel, the vehicle platform was adapted to meet 
minimum performance criteria 

Speed, acceleration, gradeability etc 
Criteria reflect European customer expectations

Compliance with Euro 3/4 was ensured for the 2002 / 2010 
case

Heavy duty vehicles (truck and buses) not considered in this 
study
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The potential of conventional fuels and powertrains
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Continued developments in engine and vehicle technologies will 
reduce energy use and GHG emissions

Spark ignition engines have more potential for improvement than 
diesel
Hybridization can provide further GHG and energy use benefits
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CNG v. liquid fuel engines
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CNG  engines are currently slightly less efficient than gasoline engines
In the future, the improvements on spark ignition engines will bring CNG 
close to diesel
Hybridisation is particularly favourable for CNG
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CNG & CBG: WTT pathways

Resource Production  and 
conditioning at 
source

Transformation at 
source

Transportation to 
markets

Transformation near 
market

Conditioning and 
distribution

Compressed natural gas (CNG)
NG (EU-mix) Production and Pipelines in EU NG grid +

conditioning On-site compression

NG (piped) Production and Pipeline into EU
conditioning a) 7000 km

b) 4000 km
Vaporisation

NG (remote) Production and Liquefaction Shipping (LNG) Road, 500 km +
conditioning (+CCS option) On-site vap / comp

Biogas
Municipal waste Production NG grid +
Liquid manure treating & On-site compression
Dry manure upgrading
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CNG: WTT energy
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The origin of the natural gas and the supply pathway are 
critical to the overall WTW energy use (and GHG emissions)

Longer supply routes become more prevalent in the future
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CNG: impact of transport pressure
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Energy to transport NG through pipeline may decrease 
because of higher pressure pipelines

Our base case assumes 8 MPa, error bars include 12 MPa case
Future new lines may operate at up to 15 MPa
Global impact will be limited because of existing infrastructure
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CNG: WTW Energy and GHG balance

WTW energy
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Today 

More energy than for conventional liquid fuels
GHG between lower than gasoline, approaching diesel in the best 
case
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CNG: WTW Energy and GHG balance

Greater engine efficiency gains predicted for CNG vehicles, especially noticeable with 
hybridization

WTW energy use remains higher than for conventional fuels except in the case of hybrids
WTW GHG emissions lower than those of diesel
Dedicated CNG vehicles perform only marginally better than bi-fuel vehicles

WTW energy
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CNG: Summary

Today the WTW GHG emissions for CNG lie between 
gasoline and diesel, approaching diesel in the best case

Beyond 2010, greater engine efficiency gains are predicted 
for CNG vehicles, especially noticeable with hybridization

WTW GHG emissions become lower than those of diesel
WTW energy use remains higher than for conventional fuels 
except in the case of hybrids
Dedicated CNG vehicles perform only marginally better than bi-
fuel vehicles

The origin of the natural gas and the supply pathway are 
critical to the overall WTW energy use and GHG emissions

Longer supply routes become more prevalent in the future
Energy to transport NG through pipeline may decrease because 
of higher pressure pipelines
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Compressed Biogas (CBG)

WTW fossil energy
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2010+ vehicles

Biogas from waste has a favourable GHG balance
Using wet manure in this way stops methane emissions to 
atmosphere, the result of intensive livestock rearing rather than an 
intrinsic quality of biogas
Alternative use for electricity production also needs to be considered
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Conventional ethanol and bio-diesel pathways
Resource Production  and 

conditioning at 
source

Transformation at 
source

Transportation to 
markets

Transformation near 
market

Conditioning and 
distribution

Ethanol
Sugar beet Growing Road Fermentation + Road, 2x150 km

Harvesting distillation
Pulp

Animal feed

Electricity

Wheat Growing Road Fermentation + Road, 2x150 km
Harvesting distillation

Wheat straw as fuel Road DDGS
(option 4)

Animal feed

Electricity

Sugar cane Growing Fermentation + Road, 150 km Road, 2x150 km
(Brazil) Harvesting distillation + Shipping

FAME/FAEE
Rape seed Growing Road Pressing
Sunflower seed Harvesting Road, 2x150 km

Esterification

NG (remote) Production and Methanol Shipping Methanol
conditioning land transport

Rape seed Growing Road Pressing
Harvesting

Esterification Road, 2x150 km
Wheat Growing Road Ethanol

Harvesting
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How much fossil energy and GHG
do ethanol and bio-diesel save?

Answer: some, a lot or none at all
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How much fossil energy and GHG do ethanol and bio-diesel save?
What energy is used and how?
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CHP

Straw
CHP

NG
GT+CHP

Sugar
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RME:
glycerine
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chemical

RME:
glycerine
as animal

feed

WTW Fossil energy savings WTW GHG emissions savings

Wheat grain

DDGS to
heat & powerDDGS to animal feed

Ethanol Bio-diesel

With the same feedstock and the same production process, the 
type of power plant and energy carrier used can make or break 
ethanol 
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How much fossil energy and GHG do ethanol and bio-diesel save?
What happens to the by-products?
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Ethanol Bio-diesel

Using by-products for energy gives of course more savings but is 
it likely to happen?
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How much fossil energy and GHG do ethanol and bio-diesel save?
What is done elsewhere?
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Ethanol Bio-diesel

Ethanol from sugar cane saves over twice as much fossil energy 
and GHG than the most likely EU pathway
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How much fossil energy and GHG do ethanol and bio-diesel save?
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Ethanol Bio-diesel

RME can deliver 50%GHG savings
The magnitude of N2O emissions is a major issue (depends on soil 
type and framing practices)
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Bio-fuels: fossil and total energy
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2010+ vehicles

The conversion of biomass into conventional bio-fuels is 
not energy-efficient

Ethanol and bio-diesel require more bio-energy than the 
fossil energy they save
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Conventional ethanol and bio-diesel: Summary

Conventional production of ethanol as practiced in Europe gives modest 
fossil energy/GHG savings compared with gasoline

Existing European pathways can be improved by use of co-generation and/or use 
of by-products for heat
Choice of crop and field N2O emissions play a critical part

Ethanol production is energy-intensive:
The production process (o/a use of CHP) and the energy source are critical
Using (brown) coal could result in increased GHG emissions even with CHP!
Using straw as fuel would obviously yield the best GHG balance

Use of by-products for energy yields lowest GHG emissions. Economics are 
likely to favour other uses, at least short term:

Sugar beet pulp
Wheat DDGS

Sugar cane uses very little fossil energy (transport only)
Bio-diesel saves fossil energy and GHG compared to conventional diesel

Field N2O emissions play a big part in the GHG balance and are responsible for 
the large uncertainty
Use of glycerine has a relatively small impact
Sunflower is more favourable than rape
The fossil energy and GHG balance can be further improved if the seedcake can 
be used as an energy source
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Cellulose to Ethanol pathways

Resource Production  and 
conditioning at 
source

Transformation at 
source

Transportation to 
markets

Transformation near 
market

Conditioning and 
distribution

Ethanol

Wheat straw Collection Road Hydrolysis + Road, 2x150 km
fermentation + dist.

Waste/Farmed wood Collection Road Hydrolysis + Road, 2x150 km
fermentation + dist.
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Ethanol from cellulose
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Wheat grain

Cellulose-to-Ethanol processes will offer a practical way of using the whole 
plant

Higher fossil energy and GHG savings
Wider choice of crops
More ethanol per hectare

The technology is still in development
Plants are relatively cheap and can re-use part of conventional ethanol plants
Availability and cost of enzymes is a major issue
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Syn-diesel and DME pathways
Resource Production  and 

conditioning at 
source

Transformation at 
source

Transportation to 
markets

Transformation near 
market

Conditioning and 
distribution

Syn diesel
NG (piped) Production and Pipeline into EU GTL plant As for refinery fuels

conditioning

NG (remote) Production and GTL plant Shipping As for refinery fuels or
conditioning (+CCS option) Mixed land transport, 500 km

Coal Production and Shipping CTL plant As for refinery fuels
conditioning (+CCS option)

Waste wood Collection Road, 50 km 200 MW gasifier
+ Shipping (800 km) FT plant

Methanol / DME
Coal (EU mix) Production and Shipping Gasification Mixed land transport

conditioning MeOH/DME synthesis 500 km

NG (piped) Production and Pipeline into EU Methanol/DME Mixed land transport
conditioning synthesis 500 km

NG (remote) Production and Methanol/DME Shipping Mixed land transport
conditioning syn (+CCS option) 500 km

Waste wood Collection Road, 50 km 200 MW gasifier
+ Shipping methanol/DME

synthesis Road, 150 km
Waste/Farmed wood Growing Road

Harvesting

Waste wood via Collection Road
BL gasifier + 
MeOH/DME syntesis Road, 150 km

Black liquor Wate wood boiler
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Biomass to Syn-diesel and DME: Energy and GHG balance
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Syn-diesel and DME from fossil and biomass sources:
Total energy and GHG balance
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Synthetic diesel and DME from fossil sources

Diesel synthesis requires more energy than conventional 
diesel refining from crude oil

GHG emissions from syn-diesel from NG (GTL) are slightly 
higher than those of conventional diesel, syn-diesel from coal 
(CTL) produces considerably more GHG

CNG from LNG is more energy and GHG efficient than GTL 
diesel or DME from remote gas
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Biomass to Syn-diesel and DME: Main issues

The BTL (or DME) route offers high renewability
It uses bio-energy to fuel the conversion process
It is, however, not energy-efficient

DME can be produced at somewhat lower energy use and 
GHG emissions than syn-diesel 

Use of DME as automotive fuel would require modified vehicles 
and infrastructure similar to LPG

A wide range of biomass sources can potentially be used
How flexible a given plant could be remains to be seen in view 
of specific problems related to different types of biomass

BTL plants will be sophisticated and costly
Scale will be an issue: compromise between cost and feasibility 
of feedstock transportation and economies of scale in the 
processing plant
The “black liquor” route offers higher wood conversion efficiency 
although the scope for practical applications will be determined
by the specific circumstances of the pulp and paper industry
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Hydrogen from NG : ICE and Fuel Cell
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2010+ vehicles

If hydrogen is produced from NG, GHG emissions savings 
are only achieved with fuel cell vehicles



Life cycle (“Well-to-Wheels”) assessment of alternative fuels and powertrains in the European context
Jean-François Larivé, CONCAWE

Reproduction permitted
with due acknowledgement

38JCAP conference, Tokyo February 2007

Hydrogen from NG : Compressed v. Liquid

WTW GHG
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2010+ vehicles

Liquid hydrogen is less energy efficient than compressed 
hydrogen
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Hydrogen from NG : hydrogen v. CNG ICE

WTW GHG
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2010+ vehicles

For ICE vehicles, direct use of NG as CNG is more 
energy/GHG efficient than hydrogen
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Impact of hydrogen production route
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Direct hydrogen production via reforming
Figures for 2010+ 

non-hybrid FC vehicles

Only hydrogen from renewables gives low GHG
But comparison with other renewables uses is required
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Impact of hydrogen production route

WTW energy
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Electrolysis is less energy efficient than direct hydrogen 
production

Hydrogen production via electrolysis
Figures for 2010+

non-hybrid FC vehicles

Ely=electrolysis
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Hydrogen: main points

There are many ways to produce hydrogen from fossil, 
biomass and other renewable sources

If hydrogen is produced from NG, GHG emissions savings 
are only achieved with fuel cell vehicles

For ICE vehicles, direct use of NG as CNG is more energy/GHG 
efficient than hydrogen

Liquid hydrogen is less energy efficient than compressed 
hydrogen

Only hydrogen from renewable sources gives low GHG
But comparison with other renewables uses is required

Electrolysis is less energy efficient than direct hydrogen 
production
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Improved vehicle efficiency is likely to be a non-regret route

Vehicle CO2 emissions
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Improved vehicle efficiency is likely to be a non-regret route

Cost of vehicle efficiency improvements
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Oil @ 50 €/bbl

The cost of vehicle efficiency improvements is compensated 
by fuel savings
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Cost v. potential for CO2 avoidance 
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Potential of EU biomass for road fuels production

Agricultural land
Set-asides
Land released by reduction of sugar production
Yield improvements
Account for actual yields in each area rather than EU-wide 
“standard “ value

No change of use of pastures and meadows

Waste
Wood
Manure and organic waste (for biogas)
Including consideration of other uses and 
practicality/economics of collection
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Potential of EU biomass for road fuels production

There is a limited potential for first generation biofuels
More advanced routes that dedicate all biomass to fuel production 
are more promising
Even in the highly favourable case of hydrogen + fuel cells, biomass 
could only account for about 25% of the total EU-25 road transport 
fuel market
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Cost of CO2 avoidance with biomass
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Land use efficiency
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Conventional
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Bars show the GHG savings each year, per hectare of land

If CO2 emissions reduction is the main objective, biomass 
should be used to produce electricity
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Biofuels implementation issues in Europe

Quality
Ethanol blends vapour pressure
Oxidation stability of bio-diesel from different sources

Importance of quality standard EN14214
Limitation on vegetable oil sources
Specific issue for long-term storage in e.g. strategic stocks

Multiplicity of grades developing in different EU Member 
States

E5/E10/E85
B5/B10/B30/B100

How to incentivise the “right” biofuels
Certification issues

Potentially more ethanol available than bio-diesel
Worsens already existing imbalance between gasoline and 
middle distillates demand
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