

よりよい大気をめざして 自動車と燃料のさらなる挑戦

JCAP第5回成果発表会

オイルWG報告

2007年2月22日

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPF (連続再生式DPF) に及ぼすアッシュの影響
 - 2.2 NSR (NOx吸蔵還元触媒) に及ぼすS、Pの影響
 - 2.3 尿素SCR (NOx選択還元触媒) に及ぼすアッシュ、S、P の影響
 - 2.4 オイル規格への反映
- 3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

研究の目的

> ディーゼル後処理装置に及ぼすエンジンオイルの影響 低硫黄軽油の導入に伴い実用化される後処理装置(CR-DPF、 NSR、尿素SCR)に対するオイルのSAPS*成分の影響を把握 することにより、オイル側からの対応策に必要な知見を得る

*SAPS:<u>Sulfated Ash(硫酸灰分), Phosphate, Sulfur</u>の略

> ガソリン車のCO₂削減に与えるエンジンオイルの効果 省燃費型エンジンオイルの燃費改善効果について、日本及び 米国の燃費測定モードで評価し、CO₂削減のポテンシャルを把 握する

検討項目		スケジュール(年度)				
		H15	H16	H17	H18	
成果発表会			中間。	まとめ ⋉∕~	最終ま	とめ
				\bowtie	\sim	
1)ティーセル後処埋装直に及はすエンシン オイルの影響						
CR-DPFに及ぼすアッシュの影響						
NSRに及ぼすS、Pの影響						
尿素SCRに及ぼすアッシュ、S、Pの影響						
2)ガソリン車のCO2削減に与えるエンジン オイルの効果						

- 1. 研究の目的と全体計画
- ディーゼル後処理装置に及ぼすエンジンオイルの影響
 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響
 - 2.4 オイル規格への反映
- 3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

≻台上走行試験

DPF圧力損失(圧損)に及ぼすオイル由来のアッシュの影響を 把握する

▶排出ガス分析試験 CR-DPF前後の排出ガス中のアッシュ成分を分析し、DPFへのアッシュ堆積に及ぼすDPF仕様、運転条件、及びオイル添加剤組成等の各種パラメータの影響を把握する

☆ 台上走行試験の試験条件と試験マトリックス

- エンジンは長期規制に対応した6.9L直噴エンジン
- DPFには前段に酸化触媒、後段のDPFにも酸化触媒を担持 した連続再生式DPF(CR-DPF)を使用
- 最高出力点での定常運転(2700rpm/全負荷)で、DPF目詰 まりによる圧力損失を評価

Test No.	Oil	Fuel sulfur	Test duration	
1	DH-1 class	S-50ppm	600h	
I	(S.Ash*=1.70)	S=30ppm		
2	Low Ash-A	S-50nnm	600b	
2	(S.Ash=1.31)	S=30ppm	00011	
3	Low Ash-B	S-50nnm	600b	
	(S.Ash=0.96)	S=30ppm	00011	
Λ	Low Ash-B	S-50nnm	1000h	
4	(S.Ash=0.96)	3–30ppm		
5	Low Ash-B	S-10ppm	600h	
	(S.Ash=0.96)	5= roppin	00011	

*Sulfated Ash

台上走行試験の結果

- オイル中の硫酸灰分量(アッシュ量の指標)の低減は、DPF内でのアッシュ堆積量を低減し圧損上昇が緩和される
- 燃料S量を50ppmから10ppmに低減しても、DPFの圧損に及 ぼす影響は認められない

<u>DPF**の断面図**</u> オイルアッシュ(CaSO4主体)

DH-1 class S.Ash =1.70% 600h

Low Ash-B S.Ash =0.96% 600h

排出ガス分析試験の試験方法

- CR-DPF前後で、排出ガス中の金属量を元素毎に定量し、その差から、CR-DPFでの各金属の捕捉率を算出
 - ➡ 短時間で各種パラメーターの影響を評価できる
- エンジン及びCR-DPFの仕様は走行試験と基本的に同じ

排出ガス分析試験結果

 今回の試験条件では、DPFのサイズ/材質、排気温度、燃料S量に拘わらず、オイル由来の金属は、ほとんどすべて CR-DPFで捕捉される

排出ガス分析試験結果

• オイル組成が変わっても、オイル由来の金属の95%以上がCR-DPFで捕捉されている

>オイルの硫酸灰分量の低減は、DPFでのアッシュ堆積量を減らし、圧損上昇を緩和させることから、DPFメンテナンス期間の延長に寄与し得る

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響
 - 2.4 オイル規格への反映
- 3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

SO₂排出量に対するオイルSの寄与度(推算)

燃料S量が10ppm以下になると、オイルS量の影響は無視できなくなる

➡オイルSの影響検討が必要

*消費されたオイル中のSがすべてSO₂に転換されると仮定して計算

≻ 台上走行試験

硫黄被毒回復のための燃料噴射制御(Sパージ)を行わない 耐久試験で、NSRに及ぼすオイル由来のS、Pの影響を把握 する

> 排出特性調査

台上走行試験と同じ運転条件、供試油で、排出ガス中のS、 P量を分析し、台上走行試験の結果を解析する

☆ 台上走行試験の試験条件と試験マトリックス

- エンジンは新短期規制に適合した4L直噴コモンレール、PM・ NOx同時低減型触媒(NSR+DPF)を搭載
- 2200rpm/115Nmの定常運転で排ガスのNOx浄化率を評価 但し、硫黄の影響を加速するために、Sパージ(硫黄被毒回 復のための燃料噴射制御)をOFF

Test	Fuel	Oil					
No.		Name	S mass%	P mass%	S.Ash mass%		
1	S10	High SAPS	0.76	0.11	1.7		
2	510	Low SAPS	0.34	0.07	0.9		
3		High SAPS	0.76	0.11	1.7		
4	S0*	Low SAPS	0.34	0.07	0.9		
5		High ZnDTP	0.69	0.28	1.4		
6		High S Basestock	0.67	0.07	0.8		

* Sulfur content <1ppm.

NOx浄化率の経時変化

- 試験時間の経過に従い、NOx浄化率は低下している
- S0燃料、S10燃料のいずれの場合も、Low SAPS油に比べ
 High SAPS油の方がNOx浄化率は低下している

NOx浄化率の比較

S0燃料の場合で比較すると、NOx浄化率の低下は、オイルのP量よりもS量により大きく影響を受けていることがわかる

S排出量とNOx浄化率との関係

- Sパージを行わない場合、NOx浄化率は、燃料とオイルからの
 S排出量が多くなるに従い低下する
- 今回の試験において、オイル由来のPが触媒被毒に与える影響は認められなかった

触媒に堆積したP/S比は、いずれの試験でもオイルのP/S比より小さく、Sに比べPの排出量が少ないことが示唆される

Test		Oil				Elementary Deposits on NSR + DPF			
No.	Fuel	Name	S	Ρ	P/S	S	Р	P/S	
			(%)	(%)		(g/unit)	(g/unit)		
1	S10	High SAPS	0.76	0.11	0.14	21.2	0.80	0.04	
2	310	Low SAPS	0.34	0.07	0.21	15.5	0.67	0.04	
3		High SAPS	0.76	0.11	0.14	8.4	0.25	0.03	
4	50	Low SAPS	0.34	0.07	0.21	5.3	0.52	0.10	
5	50	High ZnDTP	0.69	0.28	0.41	8.5	1.57	0.18	
6		High S Basestock	0.67	0.07	0.10	10.5	0.17	0.02	

S,P排出量(計算値)との比較

- Sはオイル消費量から計算した排出量の120%が触媒に堆積
- Pは排出量(計算値)の60%が堆積

Ca, Zn排出量(計算値)との比較

- Ca、ZnもPと同様に排出量(計算値)の60%が堆積
- Sと、P、Ca、Znは排出の様態が異なっていると推測

排出ガス分析試験の試験方法

- エンジン、運転条件は走行試験と同一
- 触媒手前で排出ガスをサンプリング
- 粒子状物質は円筒ろ紙でカットし、吸収液に捕捉されたガス状 物質(S,Pの酸化物)を分析

 Sはガス状物質(SOxと推定)として排出されているが、Pは ほとんど排出されていない

<u>Sulfur</u>

Phosphorus

オイル消費の中身解析

- ・ ミストによるオイル消費の割合は平均で62%
- 触媒上でのP、Ca、Znの堆積割合と一致

オイル消費

蒸発:基油・添加剤の軽質分 熱酸化分解により発生したガス等の軽質分 オイルミストの飛散

- > Sパージ(硫黄被毒回復制御)を行わない今回の試験で、 NSRのNOx浄化率は、オイル中のSによる被毒の影響 を受け、オイル由来のS排出量が多いほど低下した
- > Sと比べてPの排出量は少な〈、今回の試験条件ではP による触媒被毒は明確には認められなかった

NSR装着車にはS量を低減したオイルが好ましい

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響
 - 2.4 オイル規格への反映
- 3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

- > 長時間の耐久試験を行い、尿素SCRに対するオイル由来の アッシュ、S、Pの影響の有無を確認する
- 試験:長時間エンジン耐久試験 運転条件:100%回転/60%負荷 (熱劣化を防ぐため、SCR入口温度400 以下) 試験時間:1270h

(実車15万km相当)

- ・ エンジン:新長期規制対応エンジン(9.2L, 直噴コモンレール)
- ・ 後処理:酸化触媒+尿素SCR+酸化触媒
- ・ 燃料:市販S10軽油
- ・ 供試油: High SAPS油(国内市場上限レベル)

NOx浄化率の経時変化

- 試験中にNOx浄化率の低下は認められない
- Ca, Zn, S及びPは前段の酸化触媒に多く堆積する傾向が認められたものの、触媒性能にとって問題のないレベル

≻ 従来より使用されているDH-1相当のHigh SAPS 油を用いた長時間走行試験でNOx浄化率の低下 は認められず、排出ガスの耐久寿命を考慮しても、 尿素SCRシステムに及ぼすオイル由来のアッシュ、 S、Pの影響は小さい

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響

2.4 オイル規格への反映

3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

≻ 得られた結果をDPFを装着したトラック・バス等の重量車用 ディーゼルエンジン油の規格であるJASO DH-2に反映させた

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響
 - 2.4 オイル規格への反映
- 3. ガソリン車の CO_2 削減に与えるエンジンオイルの効果 4. まとめ

- ≻ 省燃費型エンジンオイルの燃費改善効果について、日本及び米国の燃費測定モードで評価し、CO₂削減のポテンシャルを把握する
- 試験:シャシーダイナモを用いた車両燃費試験 測定モード:10・15モード(日本) FTPモード(米国) 初期(3,200km)及びエージング後(10,400km)の燃費を 評価
- 試験車両:乗用車

(2.5L, MPI, 2WD, すべり動弁系タイプ)

供試油の性状

- 低粘度、Mo系摩擦調整剤(MoFM)を配合した省燃費型エン ジンオイル(3油種)を評価
- 基準油に対する燃費改善率(FEI)として算出

		Oil-A	Oil-C	Oil-J	Baseline Oil
Vis. grade		5W-20	5W-20	0W-20	20W-30
FM formula	tion	None	Yes	Yes	None
KV	40	45.12	45.22	41.40	103.5
mm²/s	100	8.02	8.07	8.95	12.13
VI		151	152	205	108
HTHS vis., mPa·s		2.6	2.6	2.6	3.7
Mo content, mass%		<0.001	0.02	0.10	<0.001

初期の燃費改善効果

- 低粘度化、MoFM配合により、燃費改善率は向上し、最も効果の高いOil-Jで4%程度に達する
- MoFM配合による燃費改善効果は0.5~1.0%程度と考えられる
- FTPモードは10・15モードに比べ低粘度化による燃費改善効
 果が高い

エージングにより、いずれの供試油も燃費改善率は低下しているが、1万km走行後でも1~3%程度の改善効果は維持されている

- 1. 研究の目的と全体計画
- 2. ディーゼル後処理装置に及ぼすエンジンオイルの影響
 - 2.1 CR-DPFに及ぼすアッシュの影響
 - 2.2 NSRに及ぼすS、Pの影響
 - 2.3 尿素SCRに及ぼすアッシュ、S、Pの影響
 - 2.4 オイル規格への反映
- 3. ガソリン車のCO₂削減に与えるエンジンオイルの効果 4. まとめ

まとめ

- ▶ ディーゼル後処理装置に及ぼすエンジンオイルの影響について検討し、DPFにはオイルのアッシュ低減が必要であり、NSRにはS量の低減が好ましいことを把握した 得られた結果をJASOディーゼルエンジン油規格に反映させた
- ≻ ガソリン車のCO₂削減に与えるエンジンオイルの効果は、日米の燃費測定モードにより異なるものの、 20W-30油比で最大4%程度あることを把握した 今回得られた基礎データは、オイルの燃費性能を評価するASTM試験法を開発するために活用される予定である