CityDelta: Objectives, methodology, Results

C. Cuvelier and P. Thunis JRC, European Commission, Italy

Presentation Overview

- Background
- Methodology
- Interpretation of the results
 - Emission Inventories
 - Model Validation
 - Deltas Interpretation
 - Key Findings
- Functional Relationships
- Conclusions

Presentation Overview

Background

- Methodology
- Interpretation of the results
 - Emission Inventories
 - Model Validation
 - Deltas Interpretation
 - Key Findings
- Functional Relationships
- Conclusions

CAFE: Clean Air For Europe

Launched in 2001 by the European Commission, CAFE is a programme of technical analysis aiming at the development of a long-term, integrated policy advice to protect against negative effects of air pollution on human health and the environment

<u>Question</u>: Which measures will lead to a cost-effective reduction of air-pollution health-related problems in European Cities? In particular for O3 and PM

CityDelta Objective

How to include sub-grid effects into an Europe-wide health impact assessment for PM/Ozone?

A model inter-comparison exercise for urban-regional dispersion models focusing on 8 European cities to identify:

- the systematic differences (delta's) between rural and urban background AQ ("Scale"),
- how these delta's depend on emissions ("*Emissions*"),
- how these delta's vary across cities ("Cities"),
- how these delta's vary across models ("Models")
- how these delta's vary for PM and O3 ("Pollutants").

Driving force:

WHO Review of health impacts from air pollution

- Largest damage from long-term exposure to PM2.5
 - Not yet possible to distinguish potency of individual PM components
 No threshold can be identified
 - ✓ Thus larger health benefits from large-scale reductions of low concentrations than from peak concentrations at hot spots

CityDelta Indicator: Annual PM2.5 mean

- New evidence for mortality effects from ozone
 - No firm evidence for no-effect level, but larger uncertainties for effects at low concentrations
 - \checkmark Thus also low ozone days are relevant

CityDelta Indicator: SOMO35 (*)

(*) Sum of max daily 8-hour mean O3 concentrations over 35 ppb, calculated over the entire year

Presentation Overview

• Background

Methodology

• Interpretation of the results

- Emission Inventories
- Model Validation
- Deltas Interpretation
- Key Findings
- Functional Relationships
- Discussion

<u>15 Modelling teams:</u> 7 regional-scale 11 urban-scale

Model	# of levels	Level	Domain	Resolution
CALGRID	11	10m	CITYDELTA	5-10
CAMx	11	10m	CITYDELTA	5-10
CHIMERE local	6: surface-700hPa	SL (50m)	CITYDELTA	5
CHIMERE regional	6: surface-700hPa	SL (50m)	Europe	50
EMEP Unified Model	20: surface-100hPa	1m	EMEP	50
EMEP-v.1	20: surface-100hPa	45m	EMEP	50
EPISODE	6: 25-2500m	2m	CITYDELTA	10
EUROS	4	25m	CITYDELTA	10-50
LOTOS local	3: 0-3500m	ML	CITYDELTA	5-10
LOTOS régional	3: 0-3500m	ML	Europe	50
MOCAGE	47: surface-5hPa	1st level (0-50m)	Paris, Milano	10-50
MUSCAT	22: 0-4400m	1st level (0-33m)	CITYDELTA	10
MUSE	5	10m	CITYDELTA	10
OFIS	2	ML	CITYDELTA	5
REM3 local	4: 0-3000m	SL	CITYDELTA	5
REM3 regional	4: 0-3000m	SL	Europe	50
STEM-FCM	11	10m	CITYDELTA	5
TRANSCHIM	10	50m	CITYDELTA	5-10

8 Cities:

London

Paris

Prague

Berlin

Copenhagen

Katowice

Milan

Marseille

8 Emission Scenarios

- **0** --- 1999
- 1 --- 2010 CLE: Current Legislation
- 2 --- 2010 NOx MFR: Maximum Feasible Reduction
- 3 --- 2010 NOx (CLE+MFR)/2
- 4 --- 2010 VOC MFR
- 5 --- 2010 NOX and VOC MFR
- 6 --- 2010 PMcoarse MFR
- 7 --- 2010 PM2.5 MFR

NOx	CLE-1999	MFR-1999
Prague	-34%	-62%
Milan	-36%	-53%
Paris	-42%	-65%
Berlin	-38%	-50%

- Meteo: 1999 provided by Meteo-France (Aladin 10 km) or calculated.
- Boundary conditions: provided by EMEP or calculated.
- Long term simulations: full year for PM, 6 months for O3
- Outputs delivered with resolution of 5-10 or 50 km

Delivered Output

GAS

GAS	5.	gas phase scenarios		
Madel	50 51 52 53 54 55 56	i S7 Nodel	50 S1 S2 S3 S4 S5 S6 S7	Nadel \$0 \$1 \$2 \$3 \$4 \$5 \$6 \$7 Nadel \$0 \$1 \$2 \$3 \$4 \$5 \$6 \$7
Berlin 01 02 03 06 08 09 10 11 12 13 14 15 16 17 21 24 25 24 25 24 26		Milon 01 03 06 07 08 08 09 11 12 15 17 17 17 17 17 17 17 17 17 17 17 17 17		Berlin 02 1
20 17 19 31 32 33 36 Katowice D1 06 06		15 31 32 34 38 38 39 40 41 Paria D1 03		32 x </td
17 21 D6 06 09 11 13		04 05 06 09 10 11 15 17 21		33 1 1 36 1
14 17 21 Progue D1 03 06 06 09 11 11 15 17 21 21 25 31		24 15 38 30 31 32 33 36 37 7 7 7 7 7 7 7 8 8 7 8 8 8 9 8 9 8 9 8		Progue 0.3 z <
.12 .16	TOTAL 6 Montl	: : ¼ hs GAS FILES: 542	2	TOTAL 12 Months PM FILES: 374

Visualisation tool

Emissions

Presentation Overview

- Background
- Methodology
- Interpretation of the results
 - Emission Inventories
 - Model Validation
 - Deltas Interpretation
 - Key Findings
- Functional Relationships
- Conclusions

I: Emission Inventories: Local vs Regional

- ✓ NOx, CO, SOx estimates seems quite robust
- ✓ PM estimates show 40-50% differences.
- CITY DELTA has also contributed to a considerable revision of the regional emission data

II: Model Validation: - The "Taylor" plots - The "Ensemble" model

Summary of model validation

	Concentration levels		Correlation
	Deviation from mean	Difference between coarse and fine scale models	Range
O3	+/- 20 %	Differences due to some additional titration in FS	0.4-0.8
NO2	0 to -80%	Strong underestimates disappear with FS	0.2-0.6
PM10	-20 to -50%	Stronger underestimation from LS	0.4-0.75

III: "Delta" Interpretation (1)

O3 Summer Mean

PM10 Winter

Fine scale Ensemble Large scale Ensemble

III: "Delta" Interpretation (2)

III: "Delta" Interpretation (3)

IV: Key Findings

- Models reproduce well the present situation and agree on changes from CLE in 2010. There is also agreement on relatively little scope for further improvements from emission controls beyond CLE.
- Government of the second secon
 - Models agree more on the response to VOC emission controls than on the effects of NOx cuts.
 - Models agree that a large part of PM found in urban background originates from the regional background.
 - Validation of PM is hampered by the lack of observations

PM-

- All models underestimate total PM mass, probably due to a limited understanding of sources and processes.
- The use of the ENSEMBLE model response provides a robust tool for analyzing the impacts of emission reductions

Presentation Overview

- Background
- Methodology
- Interpretation of the results
 - Emission Inventories
 - Model Validation
 - Deltas Interpretation
 - Key Findings
- Functional Relationships
- Conclusions

Functional relationships: Basic Approach

Correlate: Delta Concentration vs Delta Emission Density

ENSEMBLE Base Case, CLE and MFR

" \triangle Conc - \triangle Emis" correlations for PPM2.5 low level sources

Paris: Slope = 0.23 R2 = 0.82

Milan: Slope = 1.64 R2 = 0.68

Slopes of individual cities against EMEP wind speed in city grid

Functional relationship for PM

$$\Delta PM_{sub-grid} = (ED_{sub-grid} - ED_{EMEP}) * (k1 - k2*V_{wind})$$

⊿ PM _{sub-grid} ···		Difference in PM concentration between sub-grid (urban/rural) area and EMEP grid average	
ED _x		Emission density for low sources	
V _{wind}		Annual mean wind speed in EMEP grid cell	
k1, k2		City-Delta Parameters from ensemble model	

$$\Delta PM_{sub-grid} = ED_{EMEP}(ED_{sub-grid}/ED_{EMEP} - 1) * (k1 - k2 * V_{wind})$$

$$\Delta PM_{sub-grid} = ED_{EMEP}(PD_{sub-grid}/PD_{EMEP} - 1) * (k1 - k2 * V_{wind})$$

Validation against observations Urban background PM2.5 [µg/m³]

Discussion

- Urgent need for validation with monitoring data, hampered by lack of PM2.5 twin sites.
- Presently, grid average wind speed used. No consideration of topography. City-specific wind speeds should improve.
- Which emission/population density is representative for a city (how to draw city borders)? This determines directly the size of the urban increment.

Conclusions

- A first approach for addressing urban air quality for Europe-wide health impact assessment has been developed and implemented – based on observations and City-Delta results
- First results are promising, further refinement is necessary
- More PM2.5 monitoring data is necessary for validation
- Uncertainty and sensitivity analyses not yet performed

EuroDelta

A project to evaluate uncertainty in source-receptor relationships used in air quality policy

- 6 regional models: EMEP, MATCH, REM3, CHIMERE, LOTOS,TM5
- 28 different emission scenarios in 2000, 2010 and 2020 with area specific reductions
- Use of the ENSEMBLE approach
- Objectives : Source-receptor variability
 - Spatial variability
 - Meteorological variability
 - Confidence limits in policy modelling: EMEP vs Ensemble

http://rea.ei.jrc.it/netshare/thunis/citydelta

http://rea.ei.jrc.it/netshare/thunis/eurodelta