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Issues

• Much of the suspected health and welfare 
effects from air pollution due to particulate 
matter
– Health (the main concern)

• Morbidity and mortality concerns
• Asthma
• etc.

– Welfare
• Visibility
• Deposition

• Particulate matter modeling has significant 
challenges
– Modeling techniques in development
– input/output uncertainties impact model 

evaluation
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Outline
• Air quality modeling

– Role
– Scientific foundation
– Model vs. process

• Particulate matter models
– State of the science
– Current research directions

• Conclusions
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Role of Air Quality Modeling In 
Air Quality Management
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Air Quality Model

• Representation of physical and 
chemical processes 
– Numerical integration 

routines
• Scientifically most sound 

method to link future emissions 
changes to air quality 
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Air Quality Model
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Evolution in
Air Quality Model Development

1950 1960 1970 1980 1990 2000
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Evolution in
Air Quality Model Application

1950 1960 1970 1980 1990 2000
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Important Milestones

1970 1980 1990 2000

Second generation
AQMs
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How Good Are They?

• All evidence suggests that they describe the processes most 
affecting the evolution of ozone and (if equipped) particulate 
matter (o.k., many components of PM) after pollutant emission

• Current limitations
– Input errors

• Emissions
• Meteorology

– Monitoring data
• Sparse, ground level

– Don’t effectively use upper-air data
– Model components/formulation/design
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Particulate Matter Dynamics
• Particulates are exceptionally complex

– Complete description must include size 
and chemical composition

• Continuous size distribution
• Chemical composition varies continuously with 

size
• Phase conversion important

– PM function concentration function is more 
complex:

• C(x,t,dp): space, time and particle diameter
– Composition may not be uniform for a 

given size: C(x,t,dp, si): si is source i
– Makes ozone modeling look really easy
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Sources of Particulate Matter

• PM has both primary and secondary components
– Primary

• Organic & elemental carbon (OC/EC), crustals, metals, water
• Mobile sources, industry, utilities, dust

– Secondary
• Sulfate, nitrate, ammonium and organic carbon
• Utilities, mobile sources, industry, biogenic, fertilizer, 

emissions control equipment 
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Particulate Sulfate Formation

SO2
H2O2

O3

OH

Cloud and gas-
phase processing:

Oxidants all impacted by
NOx emissions

Emissions:
Utilities, mobile sources

H2SO4

H2SO4

NH4HSO4

(NH4)2SO4

Condensation &
ammonia 

scavenging

NH3(g)
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Particulate Nitrate & OC Formation

NH3(g)

O3+…+HNO3(g)+Org (pm)
NOx

oxides of nitrogen
(NO + NO2)

ROG
reactive organic gases
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PM Nitrate Formation

• Gaseous nitric acid formed 
from NOx emissions

• Ammonia derived directly 
from emissions

• Combine via equilibrium 
reaction
– Sensitive to temperature K

T

K=[HNO3(g)][NH3(g)]



Georgia Institute of Technology

Diurnal Nitrate Pattern

Source: R. Weber
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PM Nitrate Formation

• Nitric acid reacts with (free) 
ammonia
– As ammonia emissions 

increase, nitrate will 
increase until gas phase 
nitric acid depleted

– Sulfate reduces free 
ammonia/increases acidity, 
reducing nitrate formation

• Reducing NOx will decrease HNO3 
formation, but may not decrease PM 
nitrate much
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Particulate Matter Dynamics

EC,
Org

H+, NO3-,SO4=

Org, EC:
SO2+H2O2==>

H2SO4

HNO3(g)
SO2(g)

In droplet
chemistry

Thermodynamics
Mass
transfer

Coagulation

Internal 
Mixture

External 
Mixture

Semivolatile
organics
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Particle size distribution

Particle diameter (dp)
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Particle number distribution
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Particulate Matter Modeling 
Approaches

• Size distribution
– None
– Sectional
– Modal

• Gas-to-particle conversion
– Inorganic
– Organic

• Aerosol particle description
– Internal mixture
– External mixture
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Size Distribution

• No description
– All PM is together: no information on size or 

composition as a function of size
• Sectional

– Size distribution made up of a user defined 
number of bins

• Can have many bins (>20) or few (4)
• Describes compositional changes as a function of size

• Modal
– Size distribution made up of 2-4 “modes”

corresponding to modes in size distribution
– Mode shaped like log-normal profiles
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Sectional Approach

Aerosol Histogram
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Modal Approach
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Gas-to-Particle Conversion

• Gas phase species can condense upon, and 
volatilize from, particulate matter
– Inorganics

• Thermodynamic equilibrium usually assumed
– ISORROPIA
– AIM

– Organics
• Semivolatiles and low-vapor pressure organics
• One and two-step approach

– One step: gas phase chemistry leads to condensable 
species which goes to particulate phase

– Two step: gas phase chemistry leads to semivolatile 
product that partitions between gas and condense 
phases 
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Organic Partitioning Coefficient

Temperature
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Ki=1/Csat,i =RT/(γpimi)

Low vapor pressure
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Internal vs.External Mixtures

• Particle composition can be very 
inhomogenous even in the same size 
distribution
– Traditional approaches assume homogenous 

mixture in each size range/bin: C(x,t,dp): 
• “Internal mixture”
• See prior slides

– Theory and evidence suggests that particle 
composition varies within a size range

• Source-based differences: C(x,t,dp, si)
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Internal Mixture
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External Aerosol Modeling

From Kleeman, Cass and Eldering, 1997
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Nanoparticle Modeling
• Nanoparticles represent an important fraction, in 

terms of total number but not total mass, of PM, and 
are unique
– Very short lifetimes
– Directly emitted or, possibly, due to nucleation in short term 

events

• Models have not dealt so much with nanoparticles 
because of their short lifetimes and small fraction of 
the mass

• Three approaches for modeling:
– Sectional

• Can add multiple sections in the nano-modes
– Modal

• Adding a new nucleation mode in addition to Aitkin mode
– External, source oriented approach
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Modal Approach to Nanoparticles
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Sectional Approach for 
Nanoparticles
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Strengths and Weaknesses
• Modal

– Strengths
• Computationally efficient

– Weaknesses
• Lack of detailed information (all nano-particles similar)

• Sectional
– Strength: Tremendous capacity for detail, very flexible
– Weakness: Computationally time consuming

• External mixture
– Strengths: Tremendous detail, particles tied directly to 

sources
– Weakness: Computationally expensive

• All
– Nucleation theory is highly uncertain

• Not a major factor if particles are primary in origin
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Particulate Matter Sensitivity 
Analysis and Source Attribution

• AQM’s major function is to link source emissions to 
air quality: Source attribution
– Individual vs. regional/category analysis

• Assessing impact of individual sources difficult
– Small perturbation to noisy process
– Small difference between two large numbers

» e.g.: 10 Ton/day source in a 1000 ton/day area
(10 ton/day/1000 ton/day)*0.1(% change in O3/%change in NOx)*120 ppb=0.12 ppb

Can a model “see” this accurately?
• Assessing categories/regions/complete strategies more 

appropriate for typical approach if reductions are reasonable
– Unrealistic changes to minimize noise raises additional 

issues
• New approach: direct sensitivity analysis
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Source Attribution using 
Direct Sensitivity Analysis
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Response of Fine Nitrate to 
SO2 reductions
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Source Attribution:
Sulfate by Source Region

Atlanta Daily Average Sulfate Sensitivity
(10% Reduction in SO2 Emissions)
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Particulate Matter Modeling and 
Chemical Mechanisms

• Current generation of gas-phase mechanisms (e.g., 
SAPRC99+, RACM) in pretty good shape for ozone
– Flexible
– Evolutionary
– Appear to adequately describe gas phase kinetics for ozone, 

etc
– Limited information for determining organic composition 

of PM
• Important information for identifying sources and impacts lost

• Aqueous phase mechanisms 
– Likely adequate for inorganics and ozone
– Questions about organic oxidation
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PM Modeling State of the Science: 
Where are We?

• Ozone models are 
“mature”

• PM Models still 
evolving

• “One 
atmosphere”/“3rd 
generation” urban-to-
regional models are at 
the forefront
– Combined 

gas/aerosol/depositio
n & nested/multiscale

– Some built in 
diagnostic features

• Sensitivity analysis

Regional Multiscale Model
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Attributes of Advanced Models:
Internal Mixture Models

• Usual attributes of advanced internal mixture models
– Advanced chemical mechanism
– Sectional or modal approach
– Thermodynamic inorganic
– One-step organic formation

• Two step on the way, but large uncertainties
– Advanced diagnostic features
– Examples: URM, CMAQ, CIT-AERO, UAM-AERO

• URM extensively evaluated over eastern US as part of SAMI
• CMAQ is to become the community model
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Attributes of Advanced Models:
External Mixture Models

• Features
– Limited applications to date
– Very time and resource consuming
– AIM thermodynamics/growth
– Trajectory and grid-based versions of CIT model

• See Cass, Kleeman and co-workers

– Expect wider application in next 10 years
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Example Model Application: SAMI

• Southern Appalachians Mountains Initiative 
(SAMI)
– Stakeholder process to develop regional strategy 

to deal with:
• Ozone (Sum06), PM, haze, acid deposition
• Single model applied to suite of 5, 10 day episodes

– Episodes chosen to represent typical year
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SAMI Modeling

• Air Quality: URM-1ATM (Urban-to-Regional 
Multiscale One Atmosphere) Model
– Horizontal cells of varying dimensions (12 - 192 km)
– 7 vertical layers extending from surface to 12.8 km 

• Meteorology:  RAMS (Regional Atmospheric 
Modeling System)

– temperature, air density, wind speed and direction, total 
solar radiation, ultraviolet radiation, mixing height, 
turbulent momentum diffusivity, precipitation, cloud 
parameters

• Emissions: EMS-95 (Emission Modeling System)
– Gas: NOx, VOCs, CO, NH3, SO2

– Aerosols: OC, EC, Ca, Mg, K, NO3, SO4, “other” PM
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Urban-to-Regional Multiscale One 
Atmosphere (URM-1ATM) Model

• Three-dimensional Eulerian photochemical model
– Finite element, multiscale transport scheme (Odman & Russell, 1991)

– Gas-phase chemistry
• SAPRC-93 mechanism (Carter, 1994)

– Aqueous-phase heterogeneous sulfate chemistry
– Aerosol dynamics 

• Sectional approach (Gelbard and Seinfeld, 1980)
• ISORROPIA thermodynamic equilibrium (Nenes, et al., 1998)
• Organic aerosol yields (Pandis, et al., 1992)

– Acid deposition
• Wet: Reactive Scavenging Module (Berkowitz, et al., 1989)
• Dry: three-resistance approach

• “One atmosphere” modeling approach



Georgia Institute of Technology

Aerosol Module
• Inorganic aerosols - ISORROPIA

– sulfate, nitrate, ammonium, chloride, sodium, hydrogen ion
– condensation/evaporation  (thermodynamic equilibrium)

• Organic aerosols
– experimental and estimated aerosol yields from VOC oxidation

• Inert Species
– EC, Mg, Ca, K, other PM

• Sectional Size Distribution
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SAMI Modeling Domain and Grid

*

*
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AIRS Station 47-037-0011; Nashville, Davidson Co, TN (urban)
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Performance on July 15, 1995

Simulated (L) and Observed (R) PM2.5 for July 15, 1995
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Sensitivity Analysis to Emissions
• DDM - Decoupled Direct Method: Extended to 

Particulate Matter
– Use direct derivatives of governing equations
– Perform numerous sensitivity calculations in one model 

run.
– Inaccurate sensitivities may result due to non-linear 

response
– Assessed response of PM to emissions

• Regionally
• By source region
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Sulfate Sensitivity to SO2 Emissions



Georgia Institute of Technology

Geographic Sensitivity Regions
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SO4 & its Change on July 15, 1995 for a 10% Reduction of 
2010-OTW SO2 Emissions from Different Regions

SAMI

2010-OTW Midwest Northeast

Central FL + MS

µg/m3
+0.3 +0.1 - 0.1 - 0.3 - 0.5 - 0.7 - 0.9 - 1.1



Georgia Institute of Technology

SO4 & its Change on July 15, 1995 for a 10% Reduction of 
2010-OTW SO2 Emissions from SAMI States
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Sulfate Sensitivity at SHEN to 10% SO2 Emission Reductions
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Summary
• Ozone models are “mature”
• PM Modeling is developing

– Much more involved
– More uncertainties
– Performance is acceptable

• Main Features
– Internal mixtures

• External computationally huge
– Sectional distribution

• More flexible than modal
– Inorganic thermodynamics

• Useful features
– Direct sensitivity analysis

• Future
– External mixture approach more common
– more detailed organic chemistry



Georgia Institute of Technology

Great Smoky Mt. National Park
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