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Issues

= Much of the suspected health and welfare
effects from air pollution due to particulate

matter

— Health (the main concern)
= Morbidity and mortality concerns
e Asthma
- etc.

— Welfare
- Visibility
e Deposition
e Particulate matter modeling has significant

challenges
— Modeling techniques in development

— Input/output uncertainties impact model

evaluation -
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Outline

= Air quality modeling
— Role
— Scientific foundation
— Model vs. process

e Particulate matter models
— State of the science
— Current research directions

e Conclusions
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Role of Air Quality Modeling In
Alr Quality Management
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Alr Quality Model

= Representation of physical and
chemical processes

— Numerical integration

routines
= Scientifically most sound ' ) 50200
method to link future emissions Air Quality
changes to air quality M odel

RS = Al <R +R + 5

- Atmospheric Diffusion Equation
—| Numerics lDiscretize
.4

qic

WOgy T + L(x,t)c=1(x,1)
l Operator splitting
100 species x 5000 hor. grids x 10 layers= 5 million _
coupled, stiff non-linear differential equations C(t+2D1) = L (D) Ly (D) L(201) Ly(Dr) L (D) c(t)
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Air Quality Model
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Evolution In
Alir Quality Model Development
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Evolution In
Alr Quality Model Application
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Important Milestones
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How Good Are They?

= All evidence suggests that they describe the processes most
affecting the evolution of ozone and (if equipped) particulate
matter (o0.k., many components of PM) after pollutant emission

e Current limitations

— Input errors
« Emissions
= Meteorology
— Monitoring data
= Sparse, ground level
— Don’t effectively use upper-air data
— Model components/formulation/design
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Particulate Matter Dynamics

= Particulates are exceptionally complex

— Complete description must include size
and chemical composition
e Continuous size distribution
= Chemical composition varies continuously with
size
= Phase conversion important
— PM function concentration function is more
complex:
= C(x,t,d,): space, time and particle diameter
— Composition may not be uniform for a
given size: C(x,t,d, s;): s; Is source |
— Makes ozone modeling look really easy
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Sources of Particulate Matter

e PM has both primary and secondary components
— Primary
e Organic & elemental carbon (OC/EC), crustals, metals, water
= Mobile sources, industry, utilities, dust
— Secondary

= Sulfate, nitrate, ammonium and organic carbon

= Utilities, mobile sources, industry, biogenic, fertilizer,
emissions control equipment
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Particulate Sulfate Formation

Cloud and gas-
phase processing:
Oxidants all impacted by
NOx emissions

Condensation &
ammonia
Emissions: scavenging
Utilities, mobile sources
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Particulate Nitrate & OC Formation

NO,
oxides of nitrogen = Og+...+HNO;(g)+Org (pm)

(NO + NO,) T

ROG
==1. | reactive organic gases
ﬁ‘ NH(9)
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PM Nitrate Formation

e Gaseous nitric acid formed —
from NOx emissions R K [HNOB(Q)][NHB(Q)]

< Ammonia derived directly
from emissions

e Combine via equilibrium
reaction
— Sensitive to temperature K
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Diurnal Nitrate Pattern

Atlanta Supersite Study, August 1999
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PM Nitrate Formation

< Nitric acid reacts with (free)
ammonia

— As ammonia emissions
increase, nitrate will A
increase until gas phase
nitric acid depleted

— Sulfate reduces free
ammonia/Zincreases acidity,
reducing nitrate formation

e Reducing NOx will decrease HNO3

formation, but may not decrease PM
nitrate much

Aerosol Nitrate

— )
SO2 NH3 NOx
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Particulate Matter Dynamics
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Mass distribution (dM/d(d,))

Particle size distribution

Sulfate fraction changes with size

Accumulation

mode
Coarse

Ailtkin mode
mode

Nucleation
AA_A
Particle diameter (d,)
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Number distribution (dN/d(d,))

Particle number distribution

Nucleation

mode  Aijtkin
mode

Accumulation
mode Coarse
mode

Particle diameter (d,)
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Particulate Matter Modeling
Approaches

= Size distribution
— None
— Sectional
— Modal
= (Gas-to-particle conversion
— Inorganic
— Organic
= Aerosol particle description

— Internal mixture
— External mixture
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Size Distribution

< No description
— All PM is together: no information on size or
composition as a function of size
e Sectional

— Size distribution made up of a user defined
number of bins
= Can have many bins (>20) or few (4)
= Describes compositional changes as a function of size

 Modal

— Size distribution made up of 2-4 “modes”
corresponding to modes in size distribution

— Mode shaped like log-normal profiles
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dCi/dlogDpi
(micrograms/m3/log(micrometers))
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Sectional Approach

Aerosol Histogram
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Mass distribution (dM/d(d,))

Modal Approach

Sulfate fraction

Particle diameter (d,)
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Gas-to-Particle Conversion

e (Gas phase species can condense upon, and
volatilize from, particulate matter

— Inorganics
e Thermodynamic equilibrium usually assumed
— ISORROPIA
- AIM
— Organics
= Semivolatiles and low-vapor pressure organics
= One and two-step approach

— One step: gas phase chemistry leads to condensable
species which goes to particulate phase

— Two step: gas phase chemistry leads to semivolatile
product that partitions between gas and condense

phases o
Georgia I nstitute of Technology



Fraction condensed

Organic Partitioning Coefficient

Yield=MJaK/(1+K:M )]

>

Ki=1/Cq i =RT/(goym;)

L ow vapor pressure

\

Temperature
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Internal vs.External Mixtures

= Particle composition can be very
Inhomogenous even Iin the same size
distribution
— Traditional approaches assume homogenous
mixture in each size range/bin: C(x,t,dy):

e “Internal mixture”
= See prior slides

— Theory and evidence suggests that particle
composition varies within a size range
= Source-based differences: C(x,t,d,, s)
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Internal Mixture
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External Aerosol Modeling
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Nanoparticle Modeling

< Nanoparticles represent an important fraction, in
terms of total number but not total mass, of PM, and
are unique

— Very short lifetimes
— Directly emitted or, possibly, due to nucleation in short term
events
< Models have not dealt so much with nanoparticles
because of their short lifetimes and small fraction of

the mass

e Three approaches for modeling:

— Sectional

e Can add multiple sections in the nano-modes
— Modal

= Adding a new gueleationndginoaddition to Aitkin mode
— External, source oriented approach



Modal Approach to Nanoparticles

Nucleation mode

Altkin mode

Number distribution (dn/d(dp))

0.001 0.01 0.1 1.0 10
Particle diameter (d,, um)
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Number distribution (dn/d(d,))

Sectional Approach for
Nanoparticles

0.001 0.01 0.1 1.0 10

Particle diameter (d,)
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Strengths and Weaknesses

e Modal

— Strengths
= Computationally efficient
— Weaknesses
= Lack of detailed information (all nano-particles similar)

e Sectional

— Strength: Tremendous capacity for detail, very flexible
— Weakness: Computationally time consuming

e External mixture

— Strengths: Tremendous detail, particles tied directly to
sources

— Weakness: Computationally expensive

< All
— Nucleation theory is highly uncertain

__________= Notamajor fagtor if pasticles ate Rrigpary inorigin_____



Particulate Matter Sensitivity
Analysis and Source Attribution

< AQM’s major function is to link source emissions to
air quality: Source attribution

— Individual vs. regional/category analysis
= Assessing impact of individual sources difficult
— Small perturbation to noisy process
— Small difference between two large numbers

» e.g.. 10 Ton/day source in a 1000 ton/day area
(10 ton/day/1000 ton/day)*0.1(% change in O3/%change in NOx)*120 ppb=0.12 ppb

Can a model “see” this accurately?

= Assessing categories/regions/complete strategies more
appropriate for typical approach if reductions are reasonable

— Unrealistic changes to minimize noise raises additional
issues

< New approach: direct sensitivity analysis

Georgia I nstitute of Technology



NOP
NO,°

Source Attribution using
Direct Sensitivity Analysis

O5(t,x,y,2)

NO(t,x,y,2) .
NO,(t.xy.2) Concentrations

VOCGi(t,x,y,2) 1

Simultaneoudly

‘ decoupled ‘

Responseto
DDM-3D emissions
Sensitivity s, (1) = T ®  changes:
Analysis Tp; accurate for

very small

changes
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Response of Fine Nitrate to
SO2 reductions

Change in Nitrate Aerosol
502 Emissions Reduced by 30 Percent

I 1400 208
1.000

0.600
0200

-0.200

-0.600
I -1.000
-1.400

ug/ma3
FAWE

by July 17,1995 23:00:00
MCNE Min= -0506 at (99,95), Max= 3.821 at (130,91)
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Source Attribution:
Sulfate by Source Region
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Particulate Matter Modeling and
Chemical Mechanisms

e Current generation of gas-phase mechanisms (e.g.,
SAPRC99+, RACM) In pretty good shape for ozone

— Flexible

— Evolutionary
— Appear to adequately describe gas phase kinetics for ozone,
etc

— Limited information for determining organic composition

of PM
e |Important information for identifying sources and impacts lost

« Aqueous phase mechanisms
— Likely adequate for inorganics and ozone
— Questions about organic oxidation
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PM Modeling State of the Science:

%

Where are We?
e Ozone models are
“mature”
= PM Models still Regional Multiscale Model
evolving
e “One BEARERERDY
atmosphere”/“3rd I G B . S
generation” urban-to- BREDS: s anan
regional models are at [ N RRERA N
the forefront = JL }"w
~ Combined IR il
gas/aerosol/depositio WFERRs=Rit:
n & nested/multiscale L
— Some built in #ﬁ}’"\“’ T \;ﬂ

diagnostic features
= Sensitivity analysis
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Attributes of Advanced Models:
Internal Mixture Models

e Usual attributes of advanced internal mixture models
— Advanced chemical mechanism
— Sectional or modal approach
— Thermodynamic inorganic
— One-step organic formation
= Two step on the way, but large uncertainties
— Advanced diagnostic features
— Examples: URM, CMAQ, CIT-AERO, UAM-AERO

= URM extensively evaluated over eastern US as part of SAMI
e CMAQ is to become the community model
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Attributes of Advanced Models:
External Mixture Models

« Features
— Limited applications to date
— Very time and resource consuming
— AIM thermodynamics/growth

— Trajectory and grid-based versions of CIT model
= See Cass, Kleeman and co-workers

— Expect wider application in next 10 years
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Example Model Application: SAMI

e Southern Appalachians Mountains Initiative
(SAMI)

— Stakeholder process to develop regional strategy
to deal with:
e Ozone (Sum06), PM, haze, acid deposition
= Single model applied to suite of 5, 10 day episodes
— Episodes chosen to represent typical year

Georgia I nstitute of Technology



SAMI Modeling

e AIir Quality: URM-1ATM (Urban-to-Regional
Multiscale One Atmosphere) Model
— Horizontal cells of varying dimensions (12 - 192 km)
— 7 vertical layers extending from surface to 12.8 km

e Meteorology: RAMS (Regional Atmospheric
Modeling System)

— temperature, air density, wind speed and direction, total
solar radiation, ultraviolet radiation, mixing height,
turbulent momentum diffusivity, precipitation, cloud
parameters

e Emissions: EMS-95 (Emission Modeling System)

- Gas: NO,, VOCs, CO, NH,, SO,

— Aerosols: OC, EC, Ca, Mg, K, NO,, SO,, “other” PM

Georgia I nstitute of Technology



Urban-to-Regional Multiscale One
Atmosphere (URM-1ATM) Model

e Three-dimensional Eulerian photochemical model
— Finite element, multiscale transport scheme (Odman & Russell, 1991)

— Gas-phase chemistry
e SAPRC-93 mechanism (Carter, 1994)
— Aqueous-phase heterogeneous sulfate chemistry
— Aerosol dynamics
= Sectional approach (Gelbard and Seinfeld, 1980)
« |[SORROPIA thermodynamic equilibrium (Nenes, et al., 1998)
= Organic aerosol yields (Pandis, et al., 1992)
— Acid deposition
= Wet: Reactive Scavenging Module (Berkowitz, et al., 1989)
= Dry: three-resistance approach

= “One atmosphere” modeling approach
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Aerosol Module
Inorganic aerosols - ISORROPIA

— sulfate, nitrate, ammonium, chloride, sodium, hydrogen ion
— condensation/evaporation (thermodynamic equilibrium)

Organic aerosols
— experimental and estimated aerosol yields from VOC oxidation

Inert Species
- EC, Mg, Ca, K, other PM

Sectional Size Distribution

18
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il <ot -PM35---->

dCi/dlogDpi

(micrograms/m3/log(micrometers))

o N M O
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SAMI Modeling Domain and Grid
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Performance

a) Observed
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b) Simulated Average PM , . concentration
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Performance on July 15, 1995

Simulated (L) and Observed (R) PM, . for July 15, 1995
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Sensitivity Analysis to Emissions

e DDM - Decoupled Direct Method: Extended to
Particulate Matter
— Use direct derivatives of governing equations

— Perform numerous sensitivity calculations in one model
run.

— Inaccurate sensitivities may result due to non-linear
response

— Assessed response of PM to emissions
= Regionally
= By source region
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Sulfate Sensitivity to SO, Emissions

Sulfate Sensitivity Sulfate Sensitivity
30% Reduction in 502 Emissions 30% Reduction in 502 Emissions
DDM Bnute Force

1200 145 1200 145 -

0.400 0.400

-0.400 -0.400

-1.200 -1.200

-2.000 -2.000

-2.800 -2.800

-3 500 -3 500

4400 g 4400 48

ug/m3 H 182  ugm3d H 182

Five July 15,1995 23:00:00 Five July 15,1995 23:00:00
HENE Min= -4.726 at (138,110), Max= -0.101 at (111,67) HENE Min= -4.736 at (138,110), Max= -0.093 at (105,49)
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Geographic Sensitivity Regions

B Midwest
[ Northeast
E SAMI

Bl Southeast




SO, & its Change on July 15, 1995 for a 10% Reduction of
2010-OTW SO, Emissions from Different Regions
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SO, & its Change on July 15, 1995 for a 10% Reduction of
2010-OTW SO, Emissions from SAMI States
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SAMI Geographic |
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Sulfate Sensitivity at GRSM to 10% SO2 Emission Reductions
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Summary

Ozone models are “mature”

PM Modeling is developing
— Much more involved

— More uncertainties

— Performance is acceptable
Main Features

— Internal mixtures
= External computationally huge

— Sectional distribution
e More flexible than modal

— Inorganic thermodynamics
Useful features

— Direct sensitivity analysis
Future

— External mixture approach more common
— more detailed organic chemistry
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