Particulate Matter Modeling: Including Nanoparticles

Ted Russell Air Resources Engineering Center Georgia Tech

April 9, 2001

Issues

- Much of the suspected health and welfare effects from air pollution due to particulate matter
 - Health (the main concern)
 - Morbidity and mortality concerns
 - Asthma
 - etc.
 - Welfare
 - Visibility
 - Deposition
- Particulate matter modeling has significant challenges
 - Modeling techniques in development
 - input/output uncertainties impact model evaluation

Outline

- Air quality modeling
 - Role
 - Scientific foundation
 - Model vs. process
- Particulate matter models
 - State of the science
 - Current research directions
- Conclusions

Role of Air Quality Modeling In Air Quality Management

Air Quality Model

Computational

Planes

- Representation of physical and chemical processes
 - Numerical integration routines

Georgia Institute of Technology

Air Quality Model

Georgia Institute of Technology

Evolution in Air Quality Model Development

Evolution in **Air Quality Model Application**

Model Comprehensiveness

Important Milestones

How Good Are They?

- All evidence suggests that they describe the processes most affecting the evolution of ozone and (if equipped) particulate matter (o.k., many components of PM) after pollutant emission
- Current limitations
 - Input errors
 - Emissions
 - Meteorology
 - Monitoring data
 - Sparse, ground level
 - Don't effectively use upper-air data
 - Model components/formulation/design

Particulate Matter Dynamics

- Particulates are exceptionally complex
 - Complete description must include size and chemical composition
 - Continuous size distribution
 - Chemical composition varies continuously with size
 - Phase conversion important
 - PM function concentration function is more complex:
 - $C(x,t,d_p)$: space, time and particle diameter
 - Composition may not be uniform for a given size: $C(x,t,d_p, s_i)$: s_i is source i

- Makes ozone modeling look really easy

Sources of Particulate Matter

- PM has both primary and secondary components
 - Primary
 - Organic & elemental carbon (OC/EC), crustals, metals, water
 - Mobile sources, industry, utilities, dust
 - Secondary
 - Sulfate, nitrate, ammonium and organic carbon
 - Utilities, mobile sources, industry, biogenic, fertilizer, emissions control equipment

Particulate Sulfate Formation

Utilities, mobile sources

Particulate Nitrate & OC Formation

PM Nitrate Formation

- Gaseous nitric acid formed from NOx emissions
- Ammonia derived directly from emissions
- Combine via equilibrium reaction
 - Sensitive to temperature

Diurnal Nitrate Pattern

Georgia Institute of Technology

PM Nitrate Formation

- Nitric acid reacts with (free) ammonia
 - As ammonia emissions increase, nitrate will increase until gas phase nitric acid depleted
 - Sulfate reduces free ammonia/increases acidity, reducing nitrate formation
- Reducing NOx will decrease HNO3 formation, but may not decrease PM nitrate much

Particulate Matter Dynamics

Particle size distribution

Particle number distribution

Particulate Matter Modeling Approaches

- Size distribution
 - None
 - Sectional
 - Modal
- Gas-to-particle conversion
 - Inorganic
 - Organic
- Aerosol particle description
 - Internal mixture
 - External mixture

Size Distribution

- No description
 - All PM is together: no information on size or composition as a function of size
- Sectional
 - Size distribution made up of a user defined number of bins
 - Can have many bins (>20) or few (4)
 - Describes compositional changes as a function of size
- Modal
 - Size distribution made up of 2-4 "modes" corresponding to modes in size distribution
 - Mode shaped like log-normal profiles

Sectional Approach

Aerosol Histogram

Modal Approach

Gas-to-Particle Conversion

- Gas phase species can condense upon, and volatilize from, particulate matter
 - Inorganics
 - Thermodynamic equilibrium usually assumed
 - ISORROPIA
 - AIM
 - Organics
 - Semivolatiles and low-vapor pressure organics
 - One and two-step approach
 - One step: gas phase chemistry leads to condensable species which goes to particulate phase
 - Two step: gas phase chemistry leads to semivolatile product that partitions between gas and condense phases

Organic Partitioning Coefficient

Internal vs.External Mixtures

- Particle composition can be very inhomogenous even in the same size distribution
 - Traditional approaches assume homogenous mixture in each size range/bin: C(x,t,d_p):
 - "Internal mixture"
 - See prior slides
 - Theory and evidence suggests that particle composition varies within a size range
 - Source-based differences: C(x,t,d_p, s_i)

Internal Mixture

External Aerosol Modeling

Georgia Institute of Technology

From Kleeman, Cass and Eldering, 1997

Nanoparticle Modeling

- Nanoparticles represent an important fraction, in terms of total number but not total mass, of PM, and are unique
 - Very short lifetimes
 - Directly emitted or, possibly, due to nucleation in short term events
- Models have not dealt so much with nanoparticles because of their short lifetimes and small fraction of the mass
- Three approaches for modeling:
 - Sectional
 - Can add multiple sections in the nano-modes
 - Modal
 - Adding a new mucleation mode in addition to Aitkin mode
 - External, source oriented approach

Modal Approach to Nanoparticles

Sectional Approach for Nanoparticles

Strengths and Weaknesses

- Modal
 - Strengths
 - Computationally efficient
 - Weaknesses
 - Lack of detailed information (all nano-particles similar)
- Sectional
 - Strength: Tremendous capacity for detail, very flexible
 - Weakness: Computationally time consuming
- External mixture
 - Strengths: Tremendous detail, particles tied directly to sources
 - Weakness: Computationally expensive
- All

- Nucleation theory is highly uncertain

Not a major factor if particles are primary in origin

Particulate Matter Sensitivity Analysis and Source Attribution

- AQM's major function is to link source emissions to air quality: Source attribution
 - Individual vs. regional/category analysis
 - Assessing impact of individual sources difficult
 - Small perturbation to noisy process
 - Small difference between two large numbers
 - » e.g.: 10 Ton/day source in a 1000 ton/day area

(10 ton/day/1000 ton/day)*0.1(% change in O3/%change in NOx)*120 ppb=0.12 ppb

Can a model "see" this accurately?

- Assessing categories/regions/complete strategies more appropriate for typical approach if reductions are reasonable
 - Unrealistic changes to minimize noise raises additional issues
- New approach: direct sensitivity analysis

Source Attribution using Direct Sensitivity Analysis

Response of Fine Nitrate to SO2 reductions

Source Attribution: Sulfate by Source Region

Particulate Matter Modeling and Chemical Mechanisms

- Current generation of gas-phase mechanisms (e.g., SAPRC99+, RACM) in pretty good shape for ozone
 - Flexible
 - Evolutionary
 - Appear to adequately describe gas phase kinetics for ozone, etc
 - Limited information for determining organic composition of PM
 - Important information for identifying sources and impacts lost
- Aqueous phase mechanisms
 - Likely adequate for inorganics and ozone
 - Questions about organic oxidation

PM Modeling State of the Science: Where are We?

- Ozone models are "mature"
- PM Models still evolving
- "One atmosphere"/"3rd generation" urban-toregional models are at the forefront
 - Combined gas/aerosol/depositio n & nested/multiscale
 - Some built in diagnostic features
 - Sensitivity analysis

Regional Multiscale Model

Attributes of Advanced Models: Internal Mixture Models

- Usual attributes of advanced internal mixture models
 - Advanced chemical mechanism
 - Sectional or modal approach
 - Thermodynamic inorganic
 - One-step organic formation
 - Two step on the way, but large uncertainties
 - Advanced diagnostic features
 - Examples: URM, CMAQ, CIT-AERO, UAM-AERO
 - URM extensively evaluated over eastern US as part of SAMI
 - CMAQ is to become the community model

Attributes of Advanced Models: External Mixture Models

- Features
 - Limited applications to date
 - Very time and resource consuming
 - AIM thermodynamics/growth
 - Trajectory and grid-based versions of CIT model
 - See Cass, Kleeman and co-workers
 - Expect wider application in next 10 years

Example Model Application: SAMI

- Southern Appalachians Mountains Initiative (SAMI)
 - Stakeholder process to develop regional strategy to deal with:
 - Ozone (Sum06), PM, haze, acid deposition
 - Single model applied to suite of 5, 10 day episodes
 - Episodes chosen to represent typical year

SAMI Modeling

- Air Quality: URM-1ATM (Urban-to-Regional Multiscale One Atmosphere) Model
 - Horizontal cells of varying dimensions (12 192 km)
 - 7 vertical layers extending from surface to 12.8 km
- Meteorology: RAMS (Regional Atmospheric Modeling System)
 - temperature, air density, wind speed and direction, total solar radiation, ultraviolet radiation, mixing height, turbulent momentum diffusivity, precipitation, cloud parameters
- Emissions: EMS-95 (Emission Modeling System)
 - Gas: NO_x , VOCs, CO, NH_3 , SO_2
 - Aerosols: OC, EC, Ca, Mg, K, NO₃, SO₄, "other" PM

Urban-to-Regional Multiscale One Atmosphere (URM-1ATM) Model

- Three-dimensional Eulerian photochemical model
 - Finite element, multiscale transport scheme (Odman & Russell, 1991)
 - Gas-phase chemistry
 - SAPRC-93 mechanism (Carter, 1994)
 - Aqueous-phase heterogeneous sulfate chemistry
 - Aerosol dynamics
 - Sectional approach (Gelbard and Seinfeld, 1980)
 - ISORROPIA thermodynamic equilibrium (Nenes, *et al.*, 1998)
 - Organic aerosol yields (Pandis, et al., 1992)
 - Acid deposition
 - Wet: Reactive Scavenging Module (Berkowitz, et al., 1989)
 - Dry: three-resistance approach
- "One atmosphere" modeling approach

Aerosol Module

- Inorganic aerosols ISORROPIA
 - sulfate, nitrate, ammonium, chloride, sodium, hydrogen ion
 - condensation/evaporation (thermodynamic equilibrium)
- Organic aerosols
 - experimental and estimated aerosol yields from VOC oxidation
- Inert Species
 - EC, Mg, Ca, K, other PM
- Sectional Size Distribution

Georgia Institute of Technology

SAMI Modeling Domain and Grid

Georgia Institute of Technology

Georgia Institute of Technology

Performance on July 15, 1995

Sensitivity Analysis to Emissions

- DDM Decoupled Direct Method: Extended to Particulate Matter
 - Use direct derivatives of governing equations
 - Perform numerous sensitivity calculations in one model run.
 - Inaccurate sensitivities may result due to non-linear response
 - Assessed response of PM to emissions
 - Regionally
 - By source region

Sulfate Sensitivity to SO₂ Emissions

Geographic Sensitivity Regions

SO₄ & its Change on July 15, 1995 for a 10% Reduction of 2010-OTW SO₂ Emissions from Different Regions

SO_4 & its Change on July 15, 1995 for a 10% Reduction of 2010-OTW SO_2 Emissions from SAMI States

Summary

- Ozone models are "mature"
- PM Modeling is developing
 - Much more involved
 - More uncertainties
 - Performance is acceptable
- Main Features
 - Internal mixtures
 - External computationally huge
 - Sectional distribution
 - More flexible than modal
 - Inorganic thermodynamics
- Useful features
 - Direct sensitivity analysis
- Future
 - External mixture approach more common
 - more detailed organic chemistry

