# **CITY-DELTA**

C. Cuvelier, P. Thunis, E. Vignati (JRC-IES)

A European model-intercomparison study in support to the CAFE programme on EU environmental legislation

organised by

JRC-IES(coordinator), IIASA, EMEP, TNO-MEP











An activity in support to the CAFE programme (http://rea.ei.jrc.it/netshare/thunis/citydelta)

- Objective: Exploring changes in urban air quality (CLTY) predicted by different atmospheric chemistry-transport (CTM) dispersion models in response to changes in urban emissions (DELTA).
- Output: I dentifying the range of responses of models towards emission reductions (deltas in emissions) and providing recommendations on how to include urban air-quality into integrated assessment modelling.
- Focus:Assessments of health as well as of vegetation impacts<br/>require information about the long-term exposure. O3 and PM<br/>are currently considered.







An activity in support to the CAFE programme (http://rea.ei.jrc.it/netshare/thunis/citydelta)

#### Addressed questions

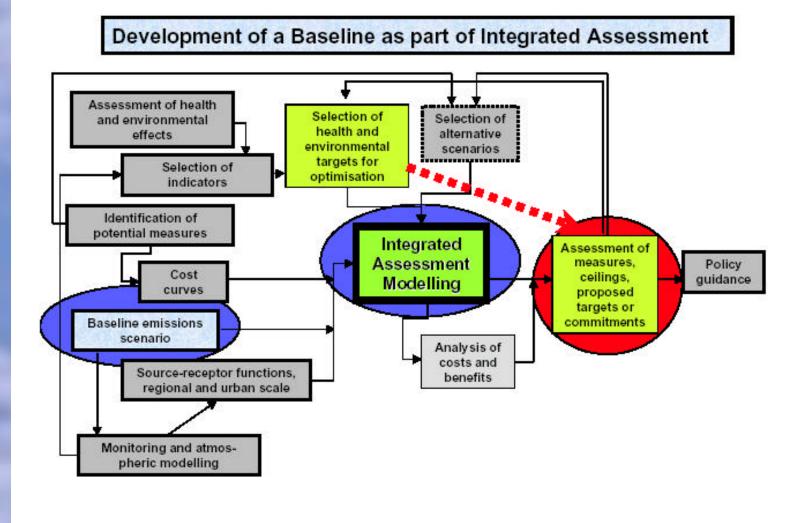
- What is the influence of local versus regional emission (reductions) on health-relevant matrices for fine particles (PM10, PM2.5) and ozone in urban air?
- How are predictions derived from regional models (e.g. with a spatial resolution of 50\*50 km) different from predictions obtained with finer resolved models?
- What is the range of agreement between different scale dispersion models on the level of responses to emission changes?





An activity in support to the CAFE programme (http://rea.ei.jrc.it/netshare/thunis/citydelta)

#### Cities:


Comparisons are conducted for a number of European cities with distinct differences in climatic conditions, geographical setting and emission densities.

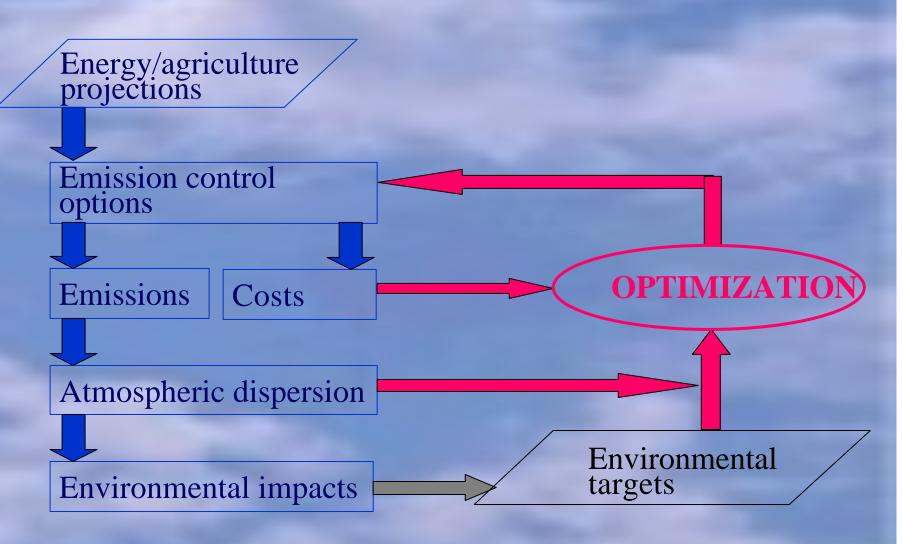


### CAFE's interest in urban air quality

- Compliance with limit values of AQ DD, revision of limit values (?)
- Health impact assessment for future air quality scenarios
- Balancing cost-effectiveness between EU-wide and urban emission controls as a basis for revised national emission ceilings and source-specific legislation

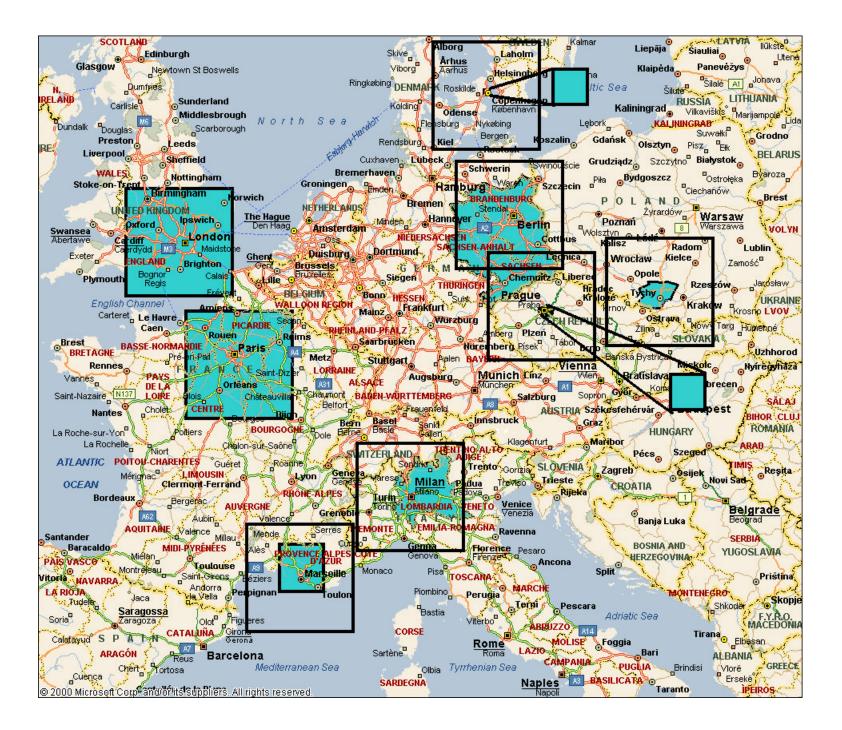
#### The CAFE assessment process of DG-ENV




### **The RAINS model**

#### **Purpose:**

**Integrated assessment of options to control air pollution in Europe** 


- Model the full chain from sources to impacts
- Multi-effects: acidification, health (O<sub>3</sub>, PM), eutrophication, vegetation (O<sub>3</sub>)
- Grasp full picture, cover all sectors (stationary, mobile, agriculture, industry)
- Includes all Europe (48 countries)
- Multi-pollutant

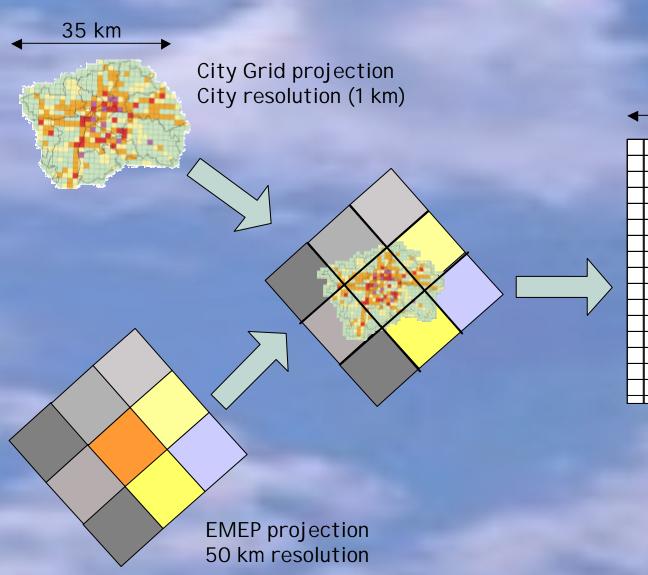
### The model: RAINS developed by IIASA





|                | Res                | Clim.<br>Zone | Sectors           | Months        | Days    | Pollutants                               | PM                   | Ref.<br>year      | VOC<br>split                             | Bio | Availa-<br>bility                 |
|----------------|--------------------|---------------|-------------------|---------------|---------|------------------------------------------|----------------------|-------------------|------------------------------------------|-----|-----------------------------------|
| Milan          | 5 km               | 2             | CORINAIR<br>(11)  | 4             | 3       | CO,Nox,SO2,<br>NH3,NMVOC,<br>CH4         | PM10<br>PM2.5<br>PM1 | 1997              | SAROAD                                   | yes | Yes<br>07/2002                    |
| Paris          | 3 km               | 1             | SNAP              | 6             | 3       | CO,CO2,Nox,<br>SO2,CH4,NH3<br>NMHC       |                      | 1998<br>&<br>1994 | GENEMIS                                  | yes | Yes<br>03/2002                    |
| Katowice       | 5 km               | yes           | SNAP2             | yes           | yes     | SO2,NO2,CO,<br>NMVOC,NH3,<br>CH4,CO2,N2O | TSP<br>PM10          | 1999              | 1991 VOC<br>protocol                     | yes | Yes<br>03/2002                    |
| Marseille      | 1 km<br>+ 10<br>km | ?             | SNAP              | yes           | yes     | SO2,NO,NO2,<br>HNO2,N2O,C<br>O,CO2,CH4   |                      | 1998              | +/- 40 VOC                               | yes | Escompte<br>> 03 - 06<br>2002 (?) |
| Berlin         | 2 km               | Varia-<br>ble | SNAP/<br>CORINAIR | Temp.<br>dep. | 2       | All                                      | PM10                 | 1997              | CORINAI<br>R / CBM-<br>IV /<br>SAPRC     | yes | On<br>request                     |
| London         | 10<br>km           | no            | 8                 | factors       | factors | Nox, VOC,<br>CO, SO2                     |                      | 1998              | 10 based on<br>reactivity<br>and struct. | yes | In<br>principle                   |
| Prague         | 1 km               |               | NFR/SNAP          | Yearly        | values  | SO2, Nox,PM,<br>VOC,CO                   | partly               | 2000              | partly                                   | yes | partly                            |
| Copenhag<br>en | 2 km               |               | traffic           |               | yes     | Nox, CO,<br>Benzene                      | ?                    | 1999              | CBM-IV                                   | no  | yes<br>10                         |



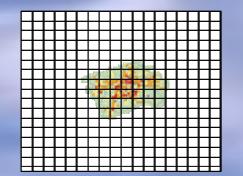

|                                    | Model – City - Scenario |            |                |                  |                                         |       |            |        |              |       |           |        |           |        |        |                 |               |          |             |      |                            |
|------------------------------------|-------------------------|------------|----------------|------------------|-----------------------------------------|-------|------------|--------|--------------|-------|-----------|--------|-----------|--------|--------|-----------------|---------------|----------|-------------|------|----------------------------|
|                                    | Mou                     | siopor     | ilos<br>itijes | vchetov<br>First | n<br>Wano                               | Itard | reira      | KOWIC  | nsink        | Leen  | N LOOM    | Neghi  | muth      | 5°- 18 | annest | neimer<br>ronop | nilos<br>ousi | Paedle   | r<br>Mi ani | ippe | ssiopoulos                 |
| <ul><li>Ozone</li><li>PM</li></ul> | OFIS                    | LOTOS      | MOCAGE         | STEM             | CHIMERE                                 | CMAQ  | THOR       | AURORA | <b>FUROS</b> | UAQAM | CMAQ-CAMX | MUSCAT | EURAD-FFA | EURAD  | UAM-IV | CALGRID         | MCCM          | REM3     | TRANSCHIM   | MARS |                            |
| Berlin                             |                         |            |                |                  |                                         | ,     | ightarrow  |        |              |       |           |        |           |        |        |                 | ●<br>●?       | <b>•</b> | •           |      | 11<br>10                   |
| Copenhagen                         |                         |            |                |                  |                                         |       | •          |        |              |       |           |        |           |        |        |                 |               |          |             |      | 8<br>8                     |
| Katowice                           |                         |            |                |                  | <ul><li>○</li><li>○</li><li>?</li></ul> |       | $\bigcirc$ |        |              | •     |           |        |           |        |        |                 | ●<br>●?       |          |             |      | 8<br>8                     |
| London                             |                         |            | ●?             |                  |                                         | }     | •          |        | •            | •     |           |        |           |        | •      |                 |               |          |             |      | <u> </u>                   |
| Marseille                          | 0                       |            | •              |                  | •                                       | •     | •          |        | •            |       |           |        |           |        | •      |                 | •             |          |             | •    | 9                          |
| Milan                              |                         |            | 0?             | •                |                                         | >     | •          | •      |              | •     |           | •      |           |        |        | •               |               |          |             |      | 10<br>9                    |
| Paris                              | $\bigcirc$              | $\bigcirc$ | ●?             |                  |                                         |       | ightarrow  |        | •            |       |           |        | •         | •      |        |                 |               |          | •           |      | 10                         |
| Prague                             | <b>O</b>                |            |                |                  |                                         | >     | •          |        |              | •     |           |        |           | •      |        |                 |               |          |             |      | <b>7</b><br><b>7</b><br>12 |

#### City - Meteo

|            | Schaed       | er Builti            | es Men    | Inesheime<br>Brook | neton<br>Hass | Helmu            | th<br>Vaute   | rd Ferre       | ara<br>Berko | witch<br>Graff | Men         |
|------------|--------------|----------------------|-----------|--------------------|---------------|------------------|---------------|----------------|--------------|----------------|-------------|
|            | NCAR (1 deg) | FUB (0.25 x 0.5 deg) | MM5 (TBD) | ALADIN (10 km)     | MM5 (2 km)    | DWD-LM (30-? km) | ECMWF (40 km) | NCEP (2.5 deg) | ETA (39 km)  | TRAMPER (2 km) | ARPS (4 km) |
| Berlin     | R            |                      | ●Y        | ●R                 | • Y           | R                | ●R            |                | OY           | ●R             |             |
| Copenhagen |              | ●R                   | ●Y        | ● R                | <b>•</b> Y    |                  | ●R            |                | OY           |                |             |
| Katowice   | ●R           |                      |           | <b>R</b>           | <b>•</b> Y    | ●R               | ●R            |                | OY           |                |             |
| London     |              | ●R                   |           | 🔍 R                |               |                  | ●R            |                | OY           |                |             |
| Marseille  | ●R           |                      |           | 🔵 R                |               |                  | ●R            | ON             | OY           |                | •?          |
| Milan      |              | ●R                   |           | 🔵 R                |               | ●R               | ●R            |                | OY           |                |             |
| Paris      |              | ●R                   | ●Y        | 🔵 R                | <b>•</b> Y    |                  | ●R            |                | OY           |                |             |
| Prague     |              | ●R                   | ●Y        | R                  |               |                  | ●R            |                | ●Y           |                |             |

13

# Aggregation




300 km

City projection

City resolution (1 km)

# **Emission format**



N sectors x M pollutants (11) (10)

One chemical speciation profile from VOC (11) to SAROAD One chemical speciation profile for each PM class (4)

Milan: for each of the 110 grids, 3 x 4 x 3 x 24 = 864 factors plus 1 climatic grid

Each 300 x 300 km city grid with FS resolution and projection Format: ASCII, SAROAD VOC speciation, EPA PM speciation

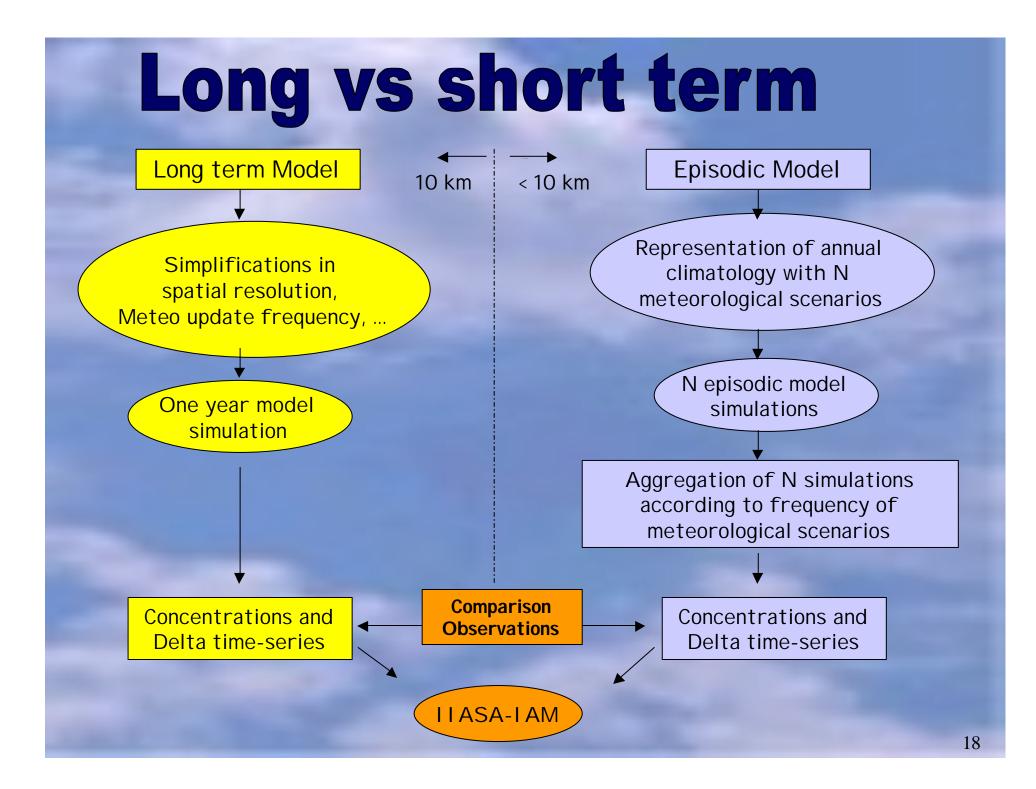
### Intercomparison scenarios

| Comparison | EMEP model run      | and city mod        | el run using        |
|------------|---------------------|---------------------|---------------------|
| between    | European            | regional (200 km)   | city emissions      |
|            | emissions           | emissions           | 5                   |
| 1          | CLE                 | CLE                 | CLE                 |
|            |                     |                     |                     |
| 2          | CLE+NOx             | CLE+NOx             | CLE+NOx             |
| 3          | <b>CLE+VOC</b>      | CLE+VOC             | <b>CLE+VOC</b>      |
| 4          | CLE+NOx+VOC         | CLE+NOx+VOC         | CLE+NOx+VOC         |
|            |                     |                     |                     |
| 5          | CLE+PM2.5           | CLE+PM2.5           | CLE+PM2.5           |
| 6          | <b>CLE+PMcoarse</b> | <b>CLE+PMcoarse</b> | <b>CLE+PMcoarse</b> |
|            |                     |                     |                     |
| 7          | CLE                 | CLE                 | <b>CLE+NOx</b>      |
| 8          | CLE                 | CLE                 | CLE+VOC             |
| 9          | CLE                 | CLE                 | CLE+NOx+VOC         |

**CLE: Emissions in 2010 with current legislation** 

## **Output format**

03


Surface hourly values period: 6 months (April to September) => daily max 8-hr mean => AOTx (AOT40, AOT60, AOT30)

#### PM2.5 & PM10

Surface daily values period: 12 months

One file per pollutant, per scenario and per city in a predefined lat-lon Grid with 10 km spatial resolution. Disk space (O3: 16Mb ; PM: 1.3Mb)

Format: netCDF (Fortran scripts provided by JRC)



# Validation

- Selection of representative measurement stations
- Comparison of model results with EU legislation indicators (O3 8h average, alert and information thresholds, number of exceedance days,...
- Inter-comparison of model deltas on same indicators
- Visualisation on Web site
- More specific validation according to modellers discussion & suggestions