Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) Project

Project Summary

Japan Clean Air Program (JCAP) Conference 2002 - Tokyo, Japan February 2002

DEC Mission

- Identify optimal combinations of fuels, lubricants, diesel engines, and emission control systems to:
 - Meet projected emission standards during the period 2000 to 2010 while maintaining continuous improvement in engine efficiency and durability
 - Maintain customer satisfaction with vehicle performance
 - Provide the basis for economical transport of people and goods
 - Meet additional potential constraints (e.g., emissions of unregulated substances, including ultra-fine particulate matter and greenhouse gases)
- Explore the potential to achieve even lower emissions of criteria and unregulated pollutants beyond 2010

APBF-DEC Products

- Light and heavy-duty platforms for measurement of effects of fuel and lubricant composition on emissions under transient operation
- Comprehensive data on status of fuel-engine-emission control technologies for reducing criteria emissions for U.S. EPA's biennial technology assessments
- Comprehensive data on effects of fuel & lubricant properties on emissions of unregulated substances

DEC Summary

- Includes vehicles from automobiles to heavy-duty trucks
- Systems approach investigating fuels, lubricants, engines, emission control systems
- Initial timeframe 2000 to 2003 to provide information to industry and government within regulatory environment
- Resource needs of \$33 million, including \$19.3 million in cash and \$14 million in in-kind contributions
- Government planning for \$14 million of the \$19.3 million cash contribution
- Government/industry Steering Committee and Work Groups guiding the DEC Project

APBF-DEC Project Schedule

	CY2001	2002	2003	2004	2005	2006	2007
Fuels, Engines, DPFs, SCR, and NO _x Adsorbers	Phase I Develop test platforn	ns Fuel sulfur a criteria pollu	tants Fuels and	Phase II Post 2010 fu	els and emissi	ons	—
Lubricants	Lubricant effects on engine-out emissions Lubricant effects on emission control performance and durability Engine/emission control system confirmatory tests						
Regulatory Environment	EPA technolo of NO _x adsor	rbers:	[◆] 2002 EPA status report H	3	◆2004 EPA status report Diesel sulf ission standard	fur fuel (15 p	MY07-10)

APBF-DEC Phase I Project Schedule

	CY2001	2002	2003	2004
Fuels & Engines DPFs and NO _x Adsorbers • Automobile	Task A System set up and optimization Task B Performance and aging evaluation versus sulfur level Task C Examination of other fuel properties			
• SUV	System set up and optimization Performance and aging evaluation versus sulfur level Examination of other fuel properties			
 HD engine 	System set up and optimization Performance and aging evaluation versus sulfur level Examination of other fuel properties			
Fuels & Engines SCR/DPFs - HD engine	System set up and optimization Durability studies and evaluation of unregulated emissions			
Lubricants	Lubricant effects on engine-out emissions Lubricant effects on emission control performance and durability Engine/emission control system confirmatory tests			

Studies of Fuel Composition Effects

	1000000	
	Phase I 2001-2003	Phase II (Tentative) 2004-2007
Fuel Effect Studied	Sulfur	Sulfur, other substances & properties (e.g., aromatics, oxygen, cetane)
Test Fuels	 DECSE 3 ppm sulfur (set-up) 8 & 15 ppm sulfur 30 ppm sulfur Refinery process fuel A 	Refinery Process Fuels • Fuel B • Fuel C • Fuel D Fischer-Tropsch Fuels • Fuel E • Fuel F
Emission Measurements	NO _x Particulate matter • Soluble organic fraction • Sulfate Hydrocarbons (HC) Carbon monoxide (CO) Unregulated substances (limited measurements)	NO _x , HC, CO, N ₂ O Particulate matter • Soluble organic fraction • Sulfate • PAH, Nitro-PAH Speciated non-methane organic grownaldehyde Other unregulated substances

DEC Participants

- U.S. DOE
- U.S. Environmental Protection Agency
- American Petroleum Institute
- National Petrochemical and Refiners Association
- Engine Manufacturers Association
- Manufacturers of Emission Controls Association
- American Chemistry Council
- California Air Resources Board/South Coast Air Quality Management District

Participating Companies/Organizations

Automobile:

Ford GM

DaimlerChrysler

Toyota

Engines:

EMA

Caterpillar

Detroit Diesel

Cummins

John Deere

Mack Trucks

International Truck

& Engine

Government:

DOE

NREL

ORNL

EPA

CARB/SCAQMD

Technology:
Battelle

Emission

Control:

MECA

Johnson Matthey

Delphi

3M

Engelhard

Siemens

Benteler

Arvin Meritor

Clean Diesel Tech.

Corning

Donaldson Co.

OMG

NGK

Rhodia

Tenneco Automotive

Energy/

Additives:

API

American Chemistry

Council

NPRA

BP

Ethyl

ExxonMobil

Marathon Ashland

Pennzoil-Quaker State

Lubrizol

Equilon

ChevronTexaco

Chevron Oronite

Ciba

Ergon

Valvoline

Motiva

Infineum

Integrated Systems Approach

DOE, EPA, additive companies, automobile manufacturers, engine manufacturers, energy companies, emission control mfrs., Calif. agencies

APBF-DEC
Steering Committee

Unregulated emissions

Experimental design and data analysis

Fuel and lubricant provision

Fuels, engines, NO_x adsorbers, and diesel particle filters Fuels, engines, selective catalytic reduction and diesel particle filters

Lubricants

Communications

Fuels, Engines, SCR/DPF Technologies

 Goal - Demonstrate low emissions performance attainable with SCR and diesel particle filter technologies (SCR/DPF). Evaluate sensitivities to fuel variables.

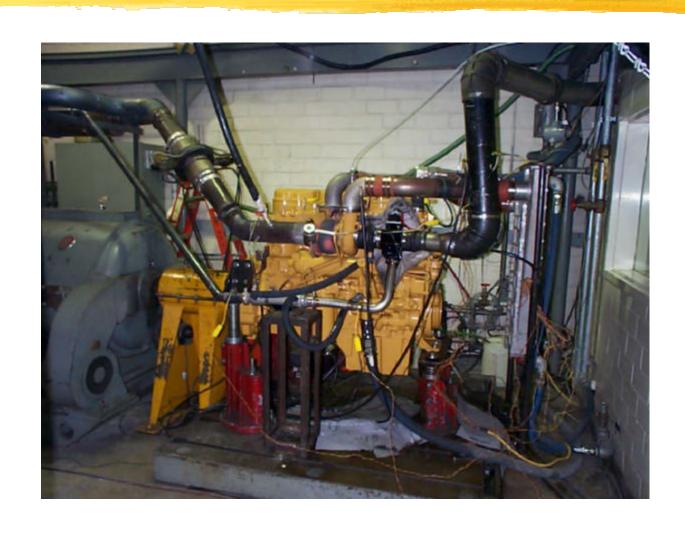
Deliverables:

- Optimized SCR/DPF systems for testing heavy-duty engines
- SCR/DPF emissions performance
- Effects of fuel variables including sulfur and aromatics
- Durability data, emissions performance with aging
- Assessment of urea infrastructure barriers

Contractors:

- Southwest Research Institute testing
- A.D. Little urea infrastructure assessment

Fuels, Engines, SCR/DPF Technologies



- Scope:
 - Two heavy-duty engines (Caterpillar C12, 12-liter, ~MY2000)
 - SCR catalysts (two of the following: vanadium, zeolite, base metal) with DPFs
 - Fuels matrix DECSE fuels (3, 8, 15, 30 ppm sulfur), Fischer-Tropsch, variable aromatics
 - Durability data out to 6,000 hours
 - Emissions regulated, PM fractions (soluble organic fraction, sulfate), N₂O, NH₃, C₆H₆, HCHO, CH₃CHO, 1,3-butadiene
- Schedule: April 2001 September 2003

	CY2001	2002	2003	2004		
IID and also are	System set up, optimization, and evaluation					
HD engines	Durability studies and evaluation of unregulated emissions					

SCR Test Cell at SwRI

Fuels, Engines, NO_x Adsorber, DPF Technologies

 Goal - Demonstrate low diesel emissions performance with system of engine, controls, fuel, NO_x adsorber, diesel particle filter, thermal management technologies

Deliverables:

- Optimized NO_x adsorber/DPF systems for testing heavy- and light-duty engines utilizing late-cycle injection
- NO_x adsorber/DPF emissions performance
- System durability

Contractors:

- FEV Engine Technology passenger car
- Southwest Research Institute pick-up truck/SUV
- Ricardo heavy-duty engine

Fuels, Engines, NO_x Adsorber, DPF Technologies

Scope:

- One heavy-duty engine (15-liter Cummins ISX) and one light-duty engine (1.9-liter TDI in Audi A4 passenger car) and one medium-duty engine (6.6-liter GM Duramax in a pickup)
- Two emission control systems in each project, including NO_x adsorbers and DPFs, and thermal management technologies
- Initial demonstration on DECSE fuel other fuel properties examined after demonstrating ultra-low emissions

Fuels, Engines, NO_x Adsorber, DPF Technologies

Schedule - May 2001 - October 2003

	CY2001	2002	2003	2004	
Automobile	System set up and optimization Performance and aging evaluation versus sulfur level Examination of other fuel properties				
SUV	System set up and optimization Performance and aging evaluation versus sulfur level Examination of other fuel properties				
HD engine	System set up and optimization Performance and aging evaluation versus sulfur level Examination of other fuel properties				

FEV Light-Duty Passenger Car Project Vehicle: Audi A4 Avant 1.9 L TDI

FEV Light-Duty Passenger Car Project 1.9 L Diesel Future II HSDI Common Rail Engine

SwRI SUV/Pick-Up Project 6600 V8 Duramax/ ZF 6-speed Manual

- Center-mounted turbocharger
- Charge Air Cooled
- Bosch Common rail fuel injection
- Noise optimized FI rate
- **♦**OH 4-V

SwRI SUV/Pick-Up Project Test Cell Set up

6.6L Duramax CIDI Engine

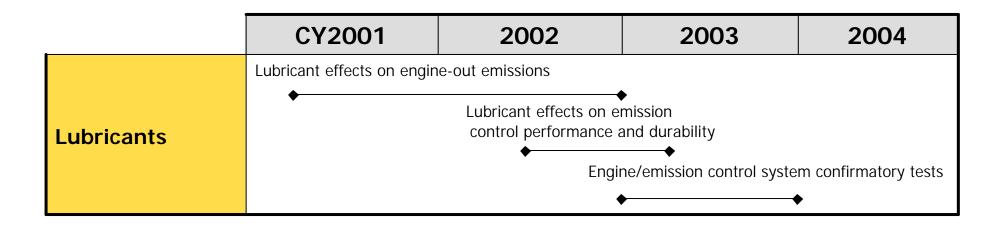
Dual Leg Exhaust

HD NOx Adsorber/DPF Ricardo

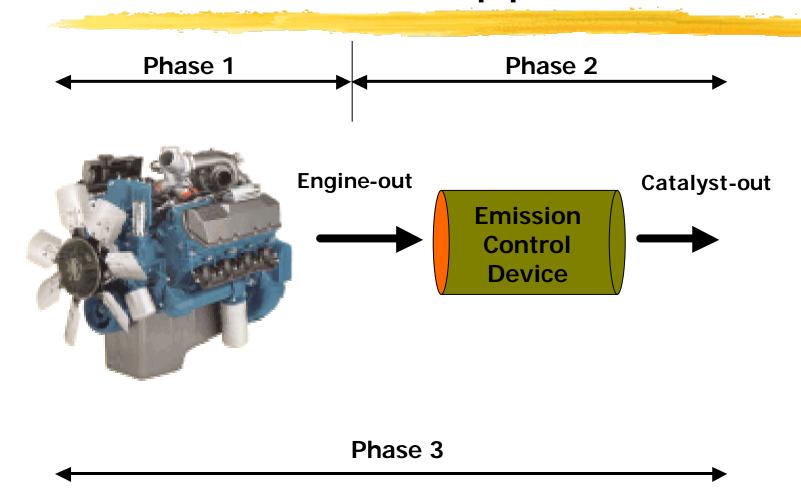
Cummins ISX engine

- 15L, DOHC
- Integrated EGR w/ VGT
- Secondary fuel injection system for NOx adsorber regeneration (to be developed by Ricardo)
- ECS architecture
 - Single leg (system 'A')
 - Twin-bed (system 'B')

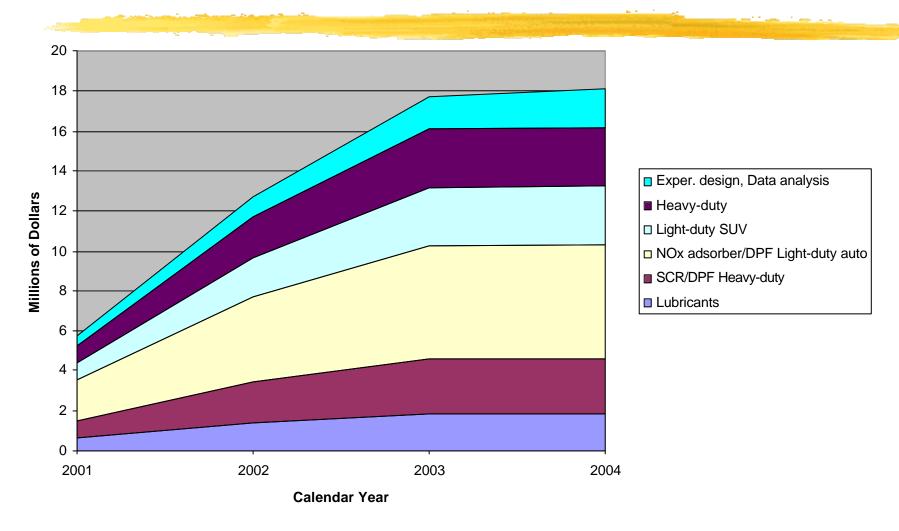
Lubricants


- Goal To determine which (if any) lube-derived emission components are detrimental to performance/durability of emission control systems
- Deliverables:
 - Documentation of effects of lubricant composition on emissions and performance of advanced emission control technologies
 - Guidelines for formulation of lubricants
 - Basestock selection
 - Additive development
- Contractor Automotive Testing Laboratories

Lubricants


Scope:

- Engine and accelerated aging tests will determine the impact of lubricant formulation on the performance and durability of diesel emission control devices.
- International T444E (7.3-liter, V8) engine equipped with CCV and cooled exhaust gas recirculation
- Schedule April 2001 December 2003



Planned Phased Approach

