Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) Project

Project Summary

Japan Clean Air Program (JCAP) Conference 2002 - Tokyo, Japan
February 2002
DEC Mission

- Identify optimal combinations of fuels, lubricants, diesel engines, and emission control systems to:
 - Meet projected emission standards during the period 2000 to 2010 while maintaining continuous improvement in engine efficiency and durability
 - Maintain customer satisfaction with vehicle performance
 - Provide the basis for economical transport of people and goods
 - Meet additional potential constraints (e.g., emissions of unregulated substances, including ultra-fine particulate matter and greenhouse gases)

- Explore the potential to achieve even lower emissions of criteria and unregulated pollutants beyond 2010
APBF-DEC Products

- Light and heavy-duty platforms for measurement of effects of fuel and lubricant composition on emissions under transient operation
- Comprehensive data on status of fuel-engine-emission control technologies for reducing criteria emissions for U.S. EPA’s biennial technology assessments
- Comprehensive data on effects of fuel & lubricant properties on emissions of unregulated substances
DEC Summary

- Includes vehicles from automobiles to heavy-duty trucks
- Systems approach investigating fuels, lubricants, engines, emission control systems
- Initial timeframe 2000 to 2003 to provide information to industry and government within regulatory environment
- Resource needs of $33 million, including $19.3 million in cash and $14 million in in-kind contributions
- Government planning for $14 million of the $19.3 million cash contribution
- Government/industry Steering Committee and Work Groups guiding the DEC Project
APBF-DEC Project Schedule

<table>
<thead>
<tr>
<th>CY2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuels, Engines, DPFs, SCR, and NO\textsubscript{x} Adsorbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop test platforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2010 fuels and emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel sulfur and criteria pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuels and unregulated emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant effects on engine-out emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant effects on emission control performance and durability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine/emission control system confirmatory tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA technology reviews of NO\textsubscript{x} adsorbers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002 EPA status report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 EPA status report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 EPA status report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel sulfur fuel (15 ppm S cap)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy-duty emission standards (phased in MY07-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier 2 emission standards (phased in MY04-09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APBF-DEC Phase I Project Schedule

<table>
<thead>
<tr>
<th>Fuels & Engines</th>
<th>CY2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPFs and NOx Adsorbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Automobile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SUV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HD engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scr/DPFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- HD engine</td>
<td>System set up and optimization</td>
<td>Performance and aging evaluation versus sulfur level</td>
<td>Performance and aging evaluation versus sulfur level</td>
<td>System set up and optimization</td>
</tr>
<tr>
<td></td>
<td>Task A</td>
<td>Task B</td>
<td>Task C</td>
<td>Durability studies and evaluation of unregulated emissions</td>
</tr>
<tr>
<td>Lubricants</td>
<td>Lubricant effects on engine-out emissions</td>
<td>Lubricant effects on emission control performance and durability</td>
<td>Engine/emission control system confirmatory tests</td>
<td></td>
</tr>
</tbody>
</table>
Studies of Fuel Composition Effects

Phase I (2001-2003)
- **Fuel Effect Studied:** Sulfur

Phase II (Tentative) (2004-2007)
- **Fuel Effect Studied:** Sulfur, other substances & properties (e.g., aromatics, oxygen, cetane)

Test Fuels
- **DECSE**
 - 3 ppm sulfur (set-up)
 - 8 & 15 ppm sulfur
 - 30 ppm sulfur
- **Refinery Process Fuels**
 - Fuel B
 - Fuel C
 - Fuel D
- **Fischer-Tropsch Fuels**
 - Fuel E
 - Fuel F

Emission Measurements
- **NOₓ**
- Particulate matter
 - Soluble organic fraction
 - Sulfate
- Hydrocarbons (HC)
- Carbon monoxide (CO)
- Unregulated substances
 - (limited measurements)
- **NOₓ, HC, CO, N₂O**
- Particulate matter
 - Soluble organic fraction
 - Sulfate
 - PAH, Nitro-PAH
- Speciated non-methane organic gases
 - Formaldehyde
- Other unregulated substances
DEC Participants

- U.S. DOE
- U.S. Environmental Protection Agency
- American Petroleum Institute
- National Petrochemical and Refiners Association
- Engine Manufacturers Association
- Manufacturers of Emission Controls Association
- American Chemistry Council
- California Air Resources Board/South Coast Air Quality Management District
Participating Companies/Organizations

<table>
<thead>
<tr>
<th>Automobile:</th>
<th>Government:</th>
<th>Emission Control:</th>
<th>Energy/ Additives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford</td>
<td>DOE</td>
<td>MECA</td>
<td>API</td>
</tr>
<tr>
<td>GM</td>
<td>NREL</td>
<td>Johnson Matthey</td>
<td>American Chemistry Council</td>
</tr>
<tr>
<td>DaimlerChrysler</td>
<td>ORNL</td>
<td>Delphi</td>
<td>NPRA</td>
</tr>
<tr>
<td>Toyota</td>
<td>EPA</td>
<td>3M</td>
<td>BP</td>
</tr>
<tr>
<td></td>
<td>CARB/ SCAQMD</td>
<td>Engelhard</td>
<td>Ethyl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siemens</td>
<td>ExxonMobil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benteler</td>
<td>Marathon Ashland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arvin Meritor</td>
<td>Pennzoil-Quaker State</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean Diesel Tech.</td>
<td>Lubrizol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corning</td>
<td>Equilon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Donaldson Co.</td>
<td>ChevronTexaco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OMG</td>
<td>Chevron Oronite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGK</td>
<td>Ciba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodia</td>
<td>Ergon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenneco Automotive</td>
<td>Valvoline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Motiva</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Infineum</td>
</tr>
</tbody>
</table>

- **Engines:** EMA, Caterpillar, Detroit Diesel, Cummins, John Deere, Mack Trucks, International Truck & Engine
- **Technology:** Battelle
Integrated Systems Approach

DOE, EPA, additive companies, automobile manufacturers, engine manufacturers, energy companies, emission control mfrs., Calif. agencies

APBF-DEC Steering Committee

- Unregulated emissions
- Experimental design and data analysis
- Fuel and lubricant provision
- Communications

- Fuels, engines, NO\textsubscript{x} adsorbers, and diesel particle filters
- Fuels, engines, selective catalytic reduction and diesel particle filters
- Lubricants
Fuels, Engines, SCR/DPF Technologies

- **Goal** - Demonstrate low emissions performance attainable with SCR and diesel particle filter technologies (SCR/DPF). Evaluate sensitivities to fuel variables.

- **Deliverables:**
 - Optimized SCR/DPF systems for testing heavy-duty engines
 - SCR/DPF emissions performance
 - Effects of fuel variables including sulfur and aromatics
 - Durability data, emissions performance with aging
 - Assessment of urea infrastructure barriers

- **Contractors:**
 - Southwest Research Institute - testing
 - A.D. Little - urea infrastructure assessment
Fuels, Engines, SCR/DPF Technologies

- **Scope:**
 - Two heavy-duty engines (Caterpillar C12, 12-liter, ~MY2000)
 - SCR catalysts (two of the following: vanadium, zeolite, base metal) with DPFs
 - Fuels matrix - DECSE fuels (3, 8, 15, 30 ppm sulfur), Fischer-Tropsch, variable aromatics
 - Durability data out to 6,000 hours
 - Emissions - regulated, PM fractions (soluble organic fraction, sulfate), N_2O, NH_3, C_6H_6, HCHO, CH_3CHO, 1,3-butadiene

- **Schedule:** April 2001 - September 2003

<table>
<thead>
<tr>
<th>CY2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD engines</td>
<td>System set up, optimization, and evaluation</td>
<td>Durability studies and evaluation of unregulated emissions</td>
<td></td>
</tr>
</tbody>
</table>
SCR Test Cell at SwRI
Fuels, Engines, NO\textsubscript{x} Adsorber, DPF Technologies

- **Goal** - Demonstrate low diesel emissions performance with system of engine, controls, fuel, NO\textsubscript{x} adsorber, diesel particle filter, thermal management technologies

- **Deliverables:**
 - Optimized NO\textsubscript{x} adsorber/DPF systems for testing heavy- and light-duty engines utilizing late-cycle injection
 - NO\textsubscript{x} adsorber/DPF emissions performance
 - System durability

- **Contractors:**
 - FEV Engine Technology - passenger car
 - Southwest Research Institute – pick-up truck/SUV
 - Ricardo - heavy-duty engine
Fuels, Engines, NO_x
Adsorber, DPF Technologies

Scope:
- One heavy-duty engine (15-liter Cummins ISX) and one light-duty engine (1.9-liter TDI in Audi A4 passenger car) and one medium-duty engine (6.6-liter GM Duramax in a pickup)
- Two emission control systems in each project, including NO_x adsorbers and DPFs, and thermal management technologies
- Initial demonstration on DECSE fuel - other fuel properties examined after demonstrating ultra-low emissions
Fuels, Engines, NO\(_x\) Adsorber, DPF Technologies

- **Schedule** - May 2001 - October 2003

<table>
<thead>
<tr>
<th></th>
<th>CY2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile</td>
<td>System set up and optimization</td>
<td>Performance and aging evaluation versus sulfur level</td>
<td>Examination of other fuel properties</td>
<td></td>
</tr>
<tr>
<td>SUV</td>
<td>System set up and optimization</td>
<td>Performance and aging evaluation versus sulfur level</td>
<td>Examination of other fuel properties</td>
<td></td>
</tr>
<tr>
<td>HD engine</td>
<td>System set up and optimization</td>
<td>Performance and aging evaluation versus sulfur level</td>
<td>Examination of other fuel properties</td>
<td></td>
</tr>
</tbody>
</table>
FEV Light-Duty Passenger Car Project
Vehicle: Audi A4 Avant 1.9 L TDI
FEV Light-Duty Passenger Car Project
1.9 L Diesel Future II HSDI Common Rail Engine
SwRI SUV/Pick-Up Project
Vehicle: 2002 Chevrolet Silverado, 2500 Series
SwRI SUV/Pick-Up Project
6600 V8 Duramax/ ZF 6-speed Manual

- Center-mounted turbocharger
- Charge Air Cooled
- Bosch Common rail fuel injection
- Noise optimized FI rate
- OH 4-V
- 2002 CA calibration with EGR
- Weight: 835 lbs.
SwRI SUV/Pick-Up Project
Test Cell Set up

6.6L Duramax CIDI Engine

Dual Leg Exhaust
HD NOx Adsorber/DPF
Ricardo

- Cummins ISX engine
 - 15L, DOHC
 - Integrated EGR w/ VGT
 - Secondary fuel injection system for NOx adsorber regeneration (to be developed by Ricardo)

- ECS architecture
 - Single leg (system ‘A’)
 - Twin-bed (system ‘B’)

APBF-DEC
Lubricants

- **Goal** - To determine which (if any) lube-derived emission components are detrimental to performance/durability of emission control systems

- **Deliverables:**
 - Documentation of effects of lubricant composition on emissions and performance of advanced emission control technologies
 - Guidelines for formulation of lubricants
 - Basestock selection
 - Additive development

- **Contractor** - Automotive Testing Laboratories
Lubricants

- **Scope:**
 - Engine and accelerated aging tests will determine the impact of lubricant formulation on the performance and durability of diesel emission control devices.
 - International T444E (7.3-liter, V8) engine equipped with CCV and cooled exhaust gas recirculation

- **Schedule** - April 2001 - December 2003

<table>
<thead>
<tr>
<th>Lubricants</th>
<th>CY2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lubricant effects on engine-out emissions</td>
<td>Lubricant effects on emission control performance and durability</td>
<td>Engine/emission control system confirmatory tests</td>
<td></td>
</tr>
</tbody>
</table>
Planned Phased Approach

Phase 1

Phase 2

Phase 3

Engine-out → Emission Control Device → Catalyst-out